
SED 1033 Transcript

EPISODE 1033

[INTRODUCTION]

[00:00:00] JM: Programming languages are dynamically types of statically typed. In a

dynamically typed language, the programmer does not need to declare if a variable is an
integer, a strong, or another type. In a statically typed language, the developer must declare the

type of the variable upfront so that the compiler can take advantage of that information.

Dynamically typed languages give the programmer flexibility and fast iteration speed, but these
languages also introduce the possibility of errors that can be avoided by performing type

checking. This is one of the reasons why Typescript has risen in popularity giving developers the
option to add types to their JavaScript variables.

Sorbet is a type checker for Ruby. Sorbet allows for gradual typing of Ruby programs which

helps engineers avoid errors that might otherwise be caused by the dynamic type system.

Dmitry Petrashko is an engineer at Stripe who helped build Sorbet. He has significant
experience in compilers, having worked on Scala before his type at Stripe. Dmitry joins the

show to discuss his work on Sorbet and the motivation for adding type checking to Ruby. We
are in the midst of the COVID-19 pandemic, and a group of developers has created a hackathon

called COCEVID-19, which is a pandemic hackathon. The goal is to create solutions that help
people manage and survive during the COVID-19 pandemic and they’re using the hackathon

platform that I’ve built called FindCollabs. If you’re interested in hacking on ideas related to
COVID-19, you can go to codevid19.com or you can go to findcollabs.com and enter into the

hackathon there. There are projects that are looking for volunteers and also there are volunteers
looking for projects.

[SPONSOR MESSAGE]

[00:02:04] JM: I’ve recently started working with X-Team. X-Team is a company that can help

you scale your team with new engineers. X-Team has been helping me out with
softwaredaily.com and they have thousands of proven developers in over 50 countries ready to

© 2020 Software Engineering Daily 1

SED 1033 Transcript

join your team and they can provide an immediate positive impact and lets you get back to

focusing on what’s most important, which is moving your team forward.

X-Team is able to support a wide range of needs. If you need DevOps, or mobile engineers, or
backend architecture, or ecommerce, or frontend development, X-Team can help you with what

you need. They’ve got a full-range of technologists who can help with AWS, and Go lang, and
Shopify, and JavaScript, and Java. Whatever your engineering team needs to get to the points

of scale that you want to get to, X-Team can help you grow your team. They offer flexible
options if you’re looking to grow your team efficiently, and their model allows for seamless

integration with companies and teams of all sizes. Whether you’re a gigantic company like Riot
Games, or Coinbase, or Google, or if you’re a tiny company like Software Daily. You can get

help with the technologies that you need. If you’re interested, you can go to x-team.com/sedaily.
That’s x-team.com/sedaily to learn about getting some help with your engineering projects from

X-Team.

Thank you to X-Team for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:03:50] JM: Dmitry Petrashko, welcome to Software Engineering Daily.

[00:03:52] DP: Hi, Jeff. Pleasure to meet you.

[00:03:55] JM: I want to talk to you today about Sorbet, which is a system for gradual typing in
Ruby. But let’s first talk about the usage of Ruby at Stripe where you work. Why is Stripe mostly

built around Ruby?

[00:04:09] DP: The reasons are arguably most like historical. The time when Stripe was getting
started, Ruby was a language that was commonly used by startups in the area to get to the

market the fastest, which was powered by the fact that Ruby is a very expressive language
which allows faster creation towards a prototype. [inaudible 00:04:30] since and that we didn’t

really have a good reason to replace it since build a lot of tooling that makes Ruby work better
for us and we went pretty heavy with it.

© 2020 Software Engineering Daily 2

SED 1033 Transcript

[00:04:42] JM: You used Ruby, but you don’t use Rails. Why not?

[00:04:46] DP: That’s correct. Early Stripe had envisioned some use cases that Rails didn’t
support well such as maintaining persistence connections to clients pretty much forever. It didn’t

end up being used at Stripe of today much. The stag that Stripe uses Sinatra and some
costume frameworks rather than Rails.

Another benefit that we get by not using Rails is that our company values explicitness and this is

mostly driven by the fact that usually the business that Stripe has the code [inaudible 00:05:17]
frequently moves money and thus having explicitness into what happens there, and a good

understanding is of big value Stripe.

[00:05:25] JM: The explicitness, I think that carries forth well into a subject which is related to
being explicit, type checking. Can you explain what type checking means?

[00:05:36] DP: Yeah. Let’s say you were to write a program. As you’re writing the program, if

the language is built in a way that there’s some invariance that can be verified even before you
go to production, it can allow you a faster iteration cycle such as, for example, if you could know

that as you’re using some method or some functionality, this method is expected to take a
numbers in argument and return a string. So then you can then verify whether you’re actually

using this method the way it’s supposed to be used in a way that the thing that you’re passing it
as an argument is actually a number and the way you’re using the result is used as if it was a

string.

The type checking is a process in which those kind of invariance are checked about your
program, and most commonly those kinds of invariance are checked for all possible evaluations

of your program so you don’t even necessarily need to run the test or have production traffic to
verify those variance. Does it make sense?

[00:06:38] JM: It does. Ruby is an untyped language. So when you add some type checking to

untyped language, what benefits do you get?

© 2020 Software Engineering Daily 3

SED 1033 Transcript

[00:06:49] DP: Most of the benefits that you get can be separated into pieces. One of them are

entirely technical and that there are some kinds of errors that can be entirely prevented such as
referring to a class with a typo in the class pane. It can no longer mistype the word integer as

Stripe, for example, or using the result of a method in the way that’s known to be safe.

Those are technical reasons why you would like to have a type system, but there are also
people reasons for why type system can be beneficial, and that now you have stronger and

spelled-out intentional agreements about what does this method do. For example, you can say
that this method takes some kind of argument such as it takes a user and this user is expected

to be a string that represents the idea of the user object, whereas if you didn’t have a type for it,
the named user could have been treated two ways where one way would be the user ID.

Another is the actual database user object. It allows teams and allows people to have explicit
spelled-out contracts, which is of huge help when you have a big engineering team.

[00:07:55] JM: Sorbet, which we’re going to get to shortly is an optional typing system or a

gradual typing system. If people are using Sorbet, it does not force them to use types. Why is
that? Why not force people to make their code entirely be typed?

[00:08:17] DP: That’s a great question, Jeff. We had to do this from the start because we were

looking to type a preexisting huge codebase that Stripe had that did not have types yet. Our
type checker had to be able to work in the world where substantial pieces of the codebase and

initially even the majority of the codebase is not typed. Thus, it was a necessity for adaption
path that said in the today world we also believe that this is a value into that.

Sometimes some users prefer to not yet type their code. In many cases this is because they

don’t know yet what they want this code to do. They’re super early in their prototype and they
don’t want the rigidness imposed by types. They want more flexibility. They want to have less

boundaries so that they’re easier to break because they’re so far still figuring out what they’re
doing. Thus, currently at Stripe, depending on how mature is your project, different people would

use different amount of tightness. Some of them will go to extreme tightness for areas. They’re
critical and are used in production. Some of them will start with early prototypes where they may

or may not use Sorbet at all.

© 2020 Software Engineering Daily 4

SED 1033 Transcript

[00:09:27] JM: Can you tell me about the initial process for creating Sorbet? Was there a

certain point you reached where there too many errors being thrown in the unchecked Ruby
language that created the impetus for wanting to have some type checking?

[00:09:46] DP: There are multiple reasons that brought to this project being funded. The team

who I’m currently a pillar tech lead for at the time had a different pillar tech lead, Paul Tarjan, a
bunch of questions coming in such as our users at Stripe were asking to provide then better

ability to describe the intentions of the code so that the users of the library and authors of the
library can better communicate with each other on how you’re expected to use a library and

what’s a valid use of the library.

They were mostly asking about this in terms of asking for documentation though. At the same
time, we’re seeing similar problems in production where some code may not be as well tested

as we wanted. They’re all combination of potential behaviors, like testing all the branches of a
complex method could be pretty hard, in particular, correctly testing error handling. Both of

those asks we believe could have been achieved by a type system.
 

Additionally, as we’re expecting from experience of other companies and Stripe itself, our
codebase to continue growing at least quadratically, we believe that recently engineers will be

having hard time having an understanding of Stripe as a whole where we believe we’ll need to
introduce natural boundaries, natural terms for them to think in so that they can stay productive.

Not only introduce the terms, but also tools, such reasons and such terms, such as IDEs, like

enabling things like auto completions. Enabling things like jump to definition. Enabling things like
find all references, and thus building Sorbet was a project that was moving towards this grand

vision of improving productivity at Stripe and making the Stripe use of Ruby sustainability in a
humungous codebase that we’ve been growing towards.

[00:11:36] JM: If I think about Typescript, that’s a typed dialect of JavaScript that people might

be familiar with. When you compile a TypeScript fi le or perhaps maybe interpretation is the word
you might want to use. You change a TypeScript fi le to a JavaScript fi le before it’s actually

ready to run. How does that compare to the model for Sorbet? Is it a different fi le format that
gets converted into Ruby fi les?

© 2020 Software Engineering Daily 5

SED 1033 Transcript

[00:12:09] DP: That’s a great question. In Sorbet’s case, we chose a slightly different path that
the one that TypeScript chose. Sorbet fi les are Ruby fi les. We did not use a different syntax. We

do not use a fi le extension, and Sorbet fi les are run with a normal Ruby frontend, with a normal
Ruby interpreter. We modified some behaviors and introduced some methods into super

classes such as sig. The method that’s used to specify the type signatures. Ruby VM is so
expressive that we didn’t need to build the customer on time to power things like this.

We’ve been able to benefit from the Ruby VM without needing to reinvent things like IDE

support initially where the standard IDE support worked with Sorbet. We didn’t need to reinvent
the runtime and we didn’t need to reinvent integration with, let’s say, GitHub. All existing tools

that work with normal Ruby also work with type Ruby.

[00:13:07] JM: How does Sorbet run? When I have one of these Ruby fi les where I’ve added
typing to it, is my code getting transformed on the fly or do I run some command line function to

do the necessary type checking? How does the Sorbet analyzer actually work?

[00:13:30] DP: Sorbet has two components. One of them does the former that you’re
describing. Another one does the later. To dive deeper, one of them allows you to run an initial

common line command that will take all Stripe’s codebase and spit out errors where you would
use some – Where we believe you were using method that either aren’t guaranteed to exist or

for things that aren’t guaranteed to exist or using the methods in a wrong way. This is what we
call static type checking, and that it allows you to statically verify that the codebase doesn’t have

some classes or verse. If the type checker is happy with it, you have much higher guarantee
that those kinds of errors will not be happening. For some of the, that’s 100%. It also enables

faster iteration time because this something that’s integrated into the IDE and it now has
sub-500 milliseconds response time in our humungous codebase.

The second component though is the runtime component where we’re verifying that the

environments that static type system was promised by a user actual hold in runtime. We need to
have this for two reasons. First of all, the un-typed code still exists, and thus un-typed code can

violate those promises and thus lead to operations that we believe shouldn’t be possible in
runtime. Thus, it now allows us to introduce invariance both from correctness perspective, which

© 2020 Software Engineering Daily 6

SED 1033 Transcript

then translates into availability and security perspective. Again, in a company that moves

money, both of those very important.

[00:15:03] JM: Before you started working on Sorbet, there were other Ruby type checking
systems. Why did you need to create a new one?

[00:15:11] DP: Before we’ve kicked off the project to implement our own. For around 3 or 4

months, members of the team, Paul Tarjan and Nelson Elhage have been evaluating other type
systems. Notably, RDL by Jeff Foster from, at the time, University of Maryland who’s now

working at Tufts, and typed Ruby from [inaudible 00:15:35] who worked at GitHub.

We’ve evaluated how they work on the Stripe codebase, and unfortunately we learned that they
will require substantial modifications in order to work well in our codebase. Most commonly the

reason being the size. To the best of our knowledge, our code is one of the three biggest
codebases, if not the biggest in the world. Thus, getting those projects to work fast enough in

our codebase seemed like they will require substantial redesign. Thus, rather than trying to
modify them, we started on our own experiment to see how far we’ll be able to get in designing

this from first principles. We’ve got pretty far under two-month period, and this was our
experiment that had been declared a success. From there, we ended up implementing our own

type checking.

Additionally since then, we’ve build a good relationship with the people who are standing behind
both of these type checkers and other type checkers, notably Steep, type checking coming from

Sautaro Matsumoto, who’s from Japan. All of us are members of a working group on Ruby 3
types. We work together with Ruby Core, a team and [inaudible 00:16:48] Ruby to bring types

into Ruby 3.

[00:16:53] JM: One of your colleagues worked on HHVM and Hack at Facebook and I believe
that was a project to create types on top of PHP. How do the motivations for Stripe building

Sorbet compare to the motivations that Facebook had when they were building Hack?

[00:17:15] DP: That’s a great questions. Indeed, Paul Tarjan, who was pillar tech lead of the
team at time and the biggest sponsor of the project was believing that majority of the problems

© 2020 Software Engineering Daily 7

SED 1033 Transcript

that our team was looking to address based on experience of our users could be held by

[inaudible 00:17:32]. In retrospect, he was right. He was leaning towards this direction, because
Hack was a project that address similar needs at Facebook.

That said, the Hack is built differently from Sorbet at Stripe mostly for reasons of PaaS

dependency. At Facebook, Hack followed HHVM. By the time Hack was build, Facebook
already had a runtime that they’ve build before this to address performance concerns. Hack was

built after it. Whereas at Stripe, we weren’t looking to address performance concerns, rather
we’re looking to address productivity and correctness concerns. Thus, Sorbet is much closely

integrated with Ruby, and that we didn’t see a value of building a runtime, because we didn’t
have problems that would get solved by building a runtime.

[SPONSOR MESSAGE]

[00:18:28] JM: DigitalOcean makes infrastructure simple. I continue to use DigitalOcean

because of the low friction and attention to user experience. DigitalOcean has kept the
experience simple and I can spin up a server in less than a minute and get high quality

performance for a low price. For an application that needs to scale, DigitalOcean has CPU
optimized droplets, memory optimized droplets, managed databases, managed Kubernetes and

many more products. DigitalOcean has the flexibility to choose the right instance for the right
workload and he could mix-and-match different configurations of CPU and RAM.

If you get stuck, DigitalOcean has thousands of high-quality tutorials, responsive Q&A forums

and a customer team who treats customers respectfully. DigitalOcean lets developers focus on
what they are building. Visit do.co/sedaily and receive $100 in credit over 60 days. That $100

can be put towards hosting or infrastructure and that includes managed databases, a managed
Kubernetes service and more.

If you want to get started with Kubernetes, DigitalOcean is a great place to go. You can use your

$100 to start building your distributed system and you can get that $100 in credit for free at
do.co/sedaily.

Thank you to DigitalOcean for being a sponsor of Software Engineering Daily.

© 2020 Software Engineering Daily 8

SED 1033 Transcript

[INTERVIEW CONTINUED]

[00:20:03] JM: Let’s say I’m a developer at Stripe. I’ve been writing Ruby code for many years
and then I get told, “Okay. We’ve got this Sorbet thing. Start using it.” How is my experience of

writing code going to change one I have Sorbet?

[00:20:22] DP: Awesome question. We see a lot of engineers who join Stripe from other
companies where they wrote Ruby, and most notably, GitHub, Shopify, and we some of the

techniques that they use to be using are the ones that Sorbet doesn’t necessarily like and that it
cannot verify that they’re safe.

Most commonly, this means that people have to get to learn the way how Stripe does those

things, which maybe is lightly more verbose, but then they work better without tooling. For
example, it’s pretty common in Ruby to meta program classes and methods into existence.

Whereas at Stripe, it means that you cannot describe types for them. Thus, a lot of our tooling
will not work well with them and that if one being able to, for example, find the definition of these

methods or find the usages of these methods.

Thus, you get to choose. Do you want to get majority of the tooling that Stripe in existence
Stripe and Stripe has built that is built on top of Sorbet, or do you want to take a shortcut in meta

programing thing to existence? There are cases where meta core programming use the right
approach, but with a value proposition at Stripe of all the tools increasingly we use meta

programming less and less. Thus, the tools that you as a developer at Stripe will most
commonly see are things like auto complete, where you start typing in methods and you see all

the methods with the same name. As you’re finished typing the method, it will also tell you the
signature of this method where it will you how many arguments does it take and what types

you’re expected to pass there?

Actually, where to go through Sorbet [inaudible 00:21:55], you can see a demo that shows
experience which is very similar how it work at Stripe with a big difference that Sorbet [inaudible

00:22:02] works on a single file. While at Stripe, we’re working on tens of thousands of files, if
not hundreds or thousands of files.

© 2020 Software Engineering Daily 9

SED 1033 Transcript

[00:22:10] JM: Tell me more about the tooling that you’re able to build around a gradually typed
check language that is not possible with untyped code? How much infrastructure and support

can you give to developers that are working with Sorbet that they might not have had with
Ruby?

[00:22:30] DP: The biggest guarantee that we can provide that’s much harder to provide with

Ruby, if even possible, is guarantees in terms of confidence. For example, let’s say that you
were looking to rename a method. If you’re renaming a method that happen to have very

common name, arguably, it’d be very hard in a big Python codebase or a Ruby codebase or a
very big [inaudible 00:22:54] type language codebase turning this method, because from all the

call sites, you’ll need to figure out could it be calling the actual method that you want to rename,
or does it happen to be calling a name with a similar or a method with a similar name that’s

defined somewhere else?

At Stripe, because we have a huge typing percentage where recently reached 90% [inaudible
00:23:14], our IDE tool can tell you exactly all the locations where the method is used in all the

type code and also tell you all the locations where the method with a similar name [inaudible
00:23:28], which brings people into willing to type it even more and that they can verify whether

this is the same method or not. This is example the thing that what’s close to impossible at
Stripe before, Sorbet and now is pretty commonly done with a tooling that we have.

[00:23:44] JM: I’d like to know how this occurs or how this is useful in practice. Maybe I think

one way to exemplify it is just how different teams interact with one another and how you can
provide guarantees in the inter-team communication. I know Stripe has a number of kind of big

monoliths. I think there are several big monoliths. There’re a lot of microservices as well, but it’s
sort of a set of monoliths and then a set of microservices kind of codebase. It’s not like entirely

monolithic or entirely these tiny services. But in any case, you have teams that are interacting
with each other’s services. You might have infrastructure teams that are going to make and

update to something relating to GRPC or some kind of method definition where they have to go
in and change the code of a bunch of other teams. But in any case, you have teams working on

each other’s code. So I just want to understand how type checking can help to improve
communications and guarantees between teams.

© 2020 Software Engineering Daily 10

SED 1033 Transcript

[00:24:52] DP: Let me give you an illustration of a problem that used to be very common at
Stripe and now rarely existed ever. There is a common class at Stripe that’s very pervasive.

Let’s call it user. Stripe codebase happens to have a lot of local variables or method arguments
that are called user. Some of them mean that you should be passing the actual database class

that represents the user object from our internal others, meaning that you should be passing the
user ID. But the author of the method didn’t write the underscore Ide because they were trying

to be sure.

Before Sorbet at Stripe, it was frequently hard to understand as a user of a method. Should I be
passing the object to the argument that’s called user, or the string that represents the object ID

into it? Thus, there was a lot of confusion where people need to go read the code and frequently
go deep into a lot of forwarders to see how the thing is used. The reverse was also true.

Sometimes infrastructure teams found that the method was misused. It was very hard for them
to find all the places that misused it, and they grew some methods that were actually agonistic

and they can work with either user object or the user as a string. This was creating even more
confusion, because then it’s very hard to state in variance. It’s very hard to tell whether you can

build all the cases.

Today, in the world, where this method will have a signature, it will be explicit in the code that
either a user ID or a user object itself and it will be checked both statically before you commit

your code and in production. It will verify that this promise of there’s only users IDs or only the
users, the object are getting passed here, will be held true in both tests and production.

[00:26:45] JM: Makes sense. Now I’d like to talk about the actual development of Sorbet, and I

think it’s worth talking through a bit like what Sorbet actually is. You corrected me before the
show started that this is not a compiler. When I think of a system like TypeScript, I think of a

compiler. I think of a language that is built on top of JavaScript that compiles down to
JavaScript. If it’s not a compiler, what is it? What is Sorbet?

[00:27:22] DP: If you were to think about Sorbet, it’s more like Hack, the original Hack, in a

sense that its output is error messages. It runs over your codebase and it starts complaining

© 2020 Software Engineering Daily 11

SED 1033 Transcript

about your code saying that the way you’re using your code makes Sorbet uncomfortable in a

sense that it cannot verify that some of the usages or some expressions of your code are safe.

In some cases it will say that you’re calling a method that since we have a typo, it will suggest a
corrected method name. In some cases, we will tell you that you’re passing the argument. But in

the end, it’s output is error messages rather than some kind of executable file or some kind of a
different program written in a different language that it transformed it into.

That’s we call the type checker other than compiler in a sense that we don’t actually have the

compilation steps inside it. We don’t have the last steps that are necessary to implement the
compiler because we didn’t need to build them.

[00:28:24] JM: Got it. The code, would you call it maybe a code scanner or I guess you just call

it a type checker? What are the different components of the type checking process program?

[00:28:38] DP: The tool as a whole, we call it type checker. Internally, public name is called
Sorbet. Internally it’s called Ruby typer, and that we try to call things what they are at Stripe

rather than the code names, and Sorbet is the public name because there are more than one
external type check of Ruby.

Internal structure has a bunch of phases. The very early phases of [inaudible 00:28:57] where

we take a string representation of Ruby as read from disk and we convert them to a tree-like
representation that’s most commonly used to represent programs. It’s called abstracts and

extreme. These abstracts and extremes goes through a bunch of transformations. Most notably,
the very first ones are syntactic transformations that transform it to a simpler language and allow

us to implement a much smaller subset of Ruby that will be more uniform.

For example, Ruby has prefix and postfix if, similar prefix and postfix while and a bunch of
these. We’re transforming Ruby language to be simpler to reason for future passes of Sorbet so

that we can handle it more uniformly and in more systematic way. Later it followed by something
that we call namer that discovers all the definitions that exist in your codebase and registers

them in something that we call global state. After this, it’s followed by resolver that finds all

© 2020 Software Engineering Daily 12

SED 1033 Transcript

usages of those definitions, all references to classes, all references to module, all references to

constants.
 

Finally, resolver is followed by something that we call inferencer that runs type inference on your
program and figures types of every local variable, type of every expression in your program and

do they work well together and start raising errors if they don’t. Does it make sense?

[00:30:23] JM: It does. But what about the fact that at the end of it, the code has types in it. I
mean, the types, those are not going to be proper Ruby code? Isn’t that just extraneous code

that you have to remove before you actually execute the Ruby code?

[00:30:43] DP: The Sorbet types are actually proper Ruby code. They’re DSL written on top of
Ruby where at buffer methods you say sig, and insight the [inaudible 00:30:53] release you say

that this method has specific parameters and return type and the entire thing is valid Ruby. It’s
evaluated in runtime both in test time and in production. The knowledge that you wrote in the

signature is used in runtime to wrap the methods via a wrapper that will enforce types on the
way in and out so that it will check that your arguments are the things that you promised. People

will use you and that your result is the thing that you promised the thing that you will return.
Again, it’s valid Ruby. Sorbet does not use something like non-Ruby syntax for comments for

coding types. This is what allows us to validate them in production.

[00:31:39] JM: Got it. I could just run my Sorbet code as normal Ruby code without running it
through the type checking system.

[00:31:48] DP: Precisely, and you’ll get some of the value even without the static type checker,

because you’ll have the runtime enforcements.

[00:31:54] JM: Cool. Now, the process of what you discussed there, you basically treat – Look
at the string representation of Ruby, build an AST and then do a lot of work on top of that AST.

That sounds like a lot of work to build even just the construction of the AST part. Is there
anything you can take off the shelf there? Just talking about building the abstract syntax tree for

Ruby, is that all stuff you had to write from scratch?

© 2020 Software Engineering Daily 13

SED 1033 Transcript

[00:32:28] DP: Actually, no. For taking Ruby source code and parsing into AST, we reused

Parser that was written by [inaudible 00:32:38] GitHub for his type Ruby codebase that itself
was a conversion of the wide course Ruby parser from Ruby into C++. That said, unfortunately,

it ended up being not as fast as we wanted for us. But this is something that we solved pretty
easily by introducing a bunch of layers or caching where we can verify that between the prior

run of Sorbet and the new run of Sorbet, the fi le has not changed and thus being able to reuse
the very initial parsed AST from it.

[00:33:11] JM: Well, that’s pretty clever. You’re basically saying the developer experience, the

first time I run my abstract syntax tree generation thing, it’s going to be kind of slow, but in future
instances, it’s going to be faster because you’re going to be able to cache and reuse most of

that abstract syntax tree.

[00:33:29] DP: Exactly, and that’s also the trick that we used first in our library. Sorbet internally
has burned in definition for Ruby standard library, which you don’t need to pastor it. As Sorbet

starts, there is one cache that’s part of the Sorbet binary itself that contains the cache
representation of standard definition of like integer, string and such. Because we don’t need to

reparse on every start, we can start as fast as single digit milliseconds. Whereas if we were to
parse them, it will take us an essential amount of time.

[00:34:04] JM: As I was going through the Sorbet work, I noticed you used a project from

Google called ABSale. I hadn’t seen this before. What is ABSale?

[00:34:15] DP: ABSale is the project that Google open sourced where they’re sharing some of
the common building blocks that Google uses for C++ and Python. We use it for a very specific

class called in-line vector. With sorbet, being a type checker for a big codebase of Stripe, the
biggest constraint that will define our performance properties is memory and cache locality.

Inline vector is an implementation of vector for C++ where you can ask it that if a vector is slow

enough and the value is small enough, you specify it as an argument for the type rather than
having the vector be allocated on Heap. It will be allocated inline in the data structure itself, and

thus substantially improve cache locality.

© 2020 Software Engineering Daily 14

SED 1033 Transcript

We use this data structure a lot in Sorbet for pretty much everything that of importance, where

we profile what are the common sizes for, let’s say, how many arguments does your method
have normally? Thus the vector, the data structures that stores your argument list will be tuned

that for common arguments length, the argument will be stores inline. That’s substantially
improving cache locality.

That’s what we originally introduced ABSale for to be able to use this data structure. Similar

data structures exists in other codebases such as the Facebook’s common library. [inaudible
00:35:52] also has similar one. It’s a pretty common trick, but we decided at the time to use

ABSale one for no particular preferential reason [inaudible 00:36:01]. We just ended up
choosing that one. Since, we’ve introduced some other helper methods from ABBsale, but the

biggest reason while we introduced it originally was the inline vector.

[00:36:11] JM: Okay. The steps that Sorbet takes, after you make the abstract syntax tree,
what’s the next step after that?

[00:36:22] DP: The next step is namer.

[00:36:24] JM: Namer. What does namer do?

[00:36:25] DP: It discovers all the definitions. It finds all of your classes and all the methods

that you find in them.

[00:36:32] JM: What does it do with that information?

[00:36:35] DP: It just registers something that we can later find them. We don’t yet know the
relationship between them, but we know that they at least exist.

[00:36:43] JM: Okay. Then what’s the next step after that?

[00:36:46] DP: The next is resolver, where we find all the references to those classes and

methods and we establish the relationships between them. For example, at this point, we will
know in a class hierarchy or which class inherits the other class, or which interfaces does

© 2020 Software Engineering Daily 15

SED 1033 Transcript

implement, or which signature does your method have? But in order to be able to do this, we

need to know what is integer at all. Thus, let’s say namer, will register a nation there is such a
thing as integer and resolver will find all references to the word integer after register have

discovered that there’s such a thing as integer.

[00:37:22] JM: What comes after the resolver phase?

[00:37:24] DP: After the resolver, the main phase is the inference phase, which knowing now all
the use sites and all the definitions can verify that all the actual code is correctly type checkable.

It will run a type inference over your program which is [inaudible 00:37:41] dependent, and thus
the majority of complexity of it is the fact that we convert your methods into dependency graphs,

into the data graph, and we’ll run through this graph in order to verify that however you were to
task variables around, all the ways you pass into other methods or call methods on them would

succeed based from the promises that you gave us from types.

[00:38:06] JM: Okay. The dependency graph, is that where you’re going to start to find actual
type errors in the code because the dependencies are going to be mismatched?

[00:38:19] DP: Each of those phases discover some kind of errors. For example, the resolver

can find that you have a reference to something that we haven’t been able to find, and it doesn’t
exist [inaudible 00:38:29]. But the most common errors and most interesting errors are found by

the inferencer, where it can say, for example, that this method was expected to return an
integer. One of the many branches forgets to return a value, and thus it returns a default value

of [inaudible 00:38:45].

[00:38:46] JM: Got it. That is after you build that dependency graph between the different
methods?

[00:38:53] DP: Exactly.

[00:38:54] JM: Very cool. This is all written in C++. Is that right?

© 2020 Software Engineering Daily 16

SED 1033 Transcript

[00:39:00] DP: The static components in written in C++. The runtime component is written in

Ruby.

[00:39:05] JM: What’s the reasoning behind that language choice?

[00:39:08] DP: That’s a great question. As you know, Stripe is pretty opinionated about the
language choice, and C++ is not one of the languages which is supported at Stripe. In order to

use C++ for this project, we went through a process at Stripe called design review [inaudible
00:39:24] more specifically where we were presenting why do we believe this project is special

compared to all other projects at Stripe. The gist of it is that from prior experiences we’re
building type checkers, I’ve build Dotty that’s later to become Scala 3. From prior experience of

Paul Tarjan at Facebook, the thing that defines performance of a type checker is memory
locality.

If you think about this, majority of type checkers are just building a huge hash map that’s

representation of all of your program and they’re verifying whether all the things there work
together correctly when you’ll be looking them up. As you pass them around, that they can –

When you’re calling a method foo and we want to verify if they’re using foo correctly, we need to
look up the method foo first. Here you have this hash map like access.

The thing that that ends up defining the type checker performance rather than being just CPU

utilization is most commonly whether you need to go into your RAM to look up this definition of
methods. If there’s a multiple tens and dozens difference between various cache levels. If

something is in your registers, access is pretty instantaneous. Again, something is in your
caches, the access will be much slower. If it’s near memory, the access will be pretty ridiculous

slow. By using language such as C++, we get to control which things are located together in
memory. We’ll get to control our performance properties. Does it make sense?

[00:40:54] JM: It does. I didn’t actually know that type checking infrastructure could be so

resource-intensive.

[00:41:01] DP: If you think about this, majority of the type checkers are non-linear on your
codebase in a sense that they need to verify some environments that can be quadratic in some

© 2020 Software Engineering Daily 17

SED 1033 Transcript

pieces. For example, it’s very common when you’re completing checking whether the method

overrides another method correctly. That this check will need to do scan all of your super
classes and see which methods are overridden.

This operation is worst case quadratic by the size of your codebase, and thus you need to find

the good algorithms that will be able to support it. Some pieces of Sorbet such as counter flow
dependency are potentially cubic in the worst case, and thus it’s very important for us to make

sure that they multiplier before the cubic function is small enough that users don’t run it for the
functions that they will commonly write.

I know how to write a function in Sorbet that will take a few tens of thousands of line of code that

will take longer than a lifetime to type check, but then people rarely write those long functions
and the easy solution is write smaller functions.

[00:42:09] JM: Wait. I’m sorry. Did you say that people actually do write these kinds of code

snippets that cause Sorbet to basically time out?

[00:42:17] DP: People rarely write this emphasis themselves, but they can write a program that
will generate such a snippet. Stripe increasingly uses a lot of code gen, and if you were to write

a method that was generated by a computer that has very complex counter flow and the
method effectively encodes a state machine, where we’ll now need to consider all the states. In

some cases, data explosion can be substantial.

Sorbet’s current algorithm is cubic in this regards, whereas things like Hack actually had a fixed
point computation there. Thus, they don’t have a guarantee when they will converge, if ever.

We’ve learned from them, but still similar to how many other type checkers are affected by this
[inaudible 00:43:01].

[SPONSOR MESSAGE]

[00:43:11] JM: Gauge and Taiko are open source testing tools by ThoughtWorks to reliably test

modern web applications. Gauge is a test automation tool that makes it simple and easy to
express tests in the language of your users. Gauge supports specifications in markdown, and

© 2020 Software Engineering Daily 18

SED 1033 Transcript

these reusable specifications simplify code, which makes refactoring easier and less code

means less time spent maintaining that code.

Taiko is a node library to automate the browser. It creates highly readable and maintainable
JavaScript tests. Taiko has a simple API. It has smart selectors and implicit weights that all work

together to make browser automation reliable. Together, Gauge and Taiko reduce the pain and
increase the reliability of test automation.

Gauge and Taiko are free to use. You can head to gauge.org to know more. That’s G-A-U-G-

E.org to learn about Gauge and Taiko, the open source test automation tools from
ThoughtWorks.

[INTERVIEW CONTINUED]

[00:44:27] JM: If I write some Sorbet code that has some non-typed variables, are you giving

me any guarantees around the untyped variables or are those simply areas of the code where I
may be liable to have problems in the code because I have not done the work to actually type

that code?

[00:44:50] DP: Sorbet will work hard to try to infer the type of your variable. For example, if you
were to assign something that’s as known types such as [inaudible 00:45:00] let’s say A equals

q. We’ll know from there that A is an integer. Similarly, if you were to call a method that whose
type we know, from there we’ll know the value that let you assign to a variable, but there are

cases where we we’ll know the type of the variable and things like IDE will allow you to discover
this. Where if you were to hover over this variable at Stripe in the IDE, it will tell you that the

variable is untyped. Similarly, some features such as auto complete will not work in this variable.

[00:45:30] JM: Tell me about the process of testing Sorbet.

[00:45:33] DP: Actually, Nelson has written an awesome blog post about this, but the gist is
Sorbet has a bunch of internal representations between phases such as after the parser will

have the parse tree. After namer, we’ll have the this global stage, which contains list of
definitions. After resolver, that two will become results.

© 2020 Software Engineering Daily 19

SED 1033 Transcript

Sorbet has a way to print all of those intermediate states, and the way we test Sorbet is by
verifying on a test suite that the intermediate states have not changed or if they have changed,

the code review will include reviewing the changes that happen to them to make sure that all of
them were intentional and all of them are not regressions.

[00:46:22] JM: What else have you done to improve the speed of Sorbet overtime?

[00:46:26] DP: Sorbet internally has a lot of parallelism. The very early phases, the parser, the

early [inaudible 00:46:35] phases are massively parallel per fi le and they’re also cached per fi le.
That’s if you were to move by it a single fi le in our repo, we won’t actually need to reparse the

entire codebase. We will only need to reparse that fi le. Similarly, we’ll only need to do
reformation to this fi le.

Namer is the only phase that’s fully single-threated, because we need to discover the definitions

and we’re [inaudible 00:47:01] global state, mutations of which if were done concurrently would
be unsafe. We currently actually have a project in fly that it senses ability to

parallelize this, but this will introduce a potentially more complexity into namer.

Today it’s warranted, because traffic has grown substantially that this has become a problem.
While in early days of Sorbet, more than three years ago, having a sequential namer was not

open. Inferencer similarly has been parallel from pretty much day one, and that by the type
inference runs, all the knowledge about the codebase has been discovered and is immutable.

Thus, the algorithm is just as parallel sharding across whole files while keeping a single copy of
the global state and only reading through it.

All of those invariance in maintained by the C++ type system where we can’t verify ownership

with unique pointers and C++ [inaudible 00:48:00], which is transitive, allows to verify us that
things like global states, if you have a constant inference rate, cannot be mutated in a way

which will internal safe.

© 2020 Software Engineering Daily 20

SED 1033 Transcript

[00:48:11] JM: Before you worked on Sorbet, you spent some time working on Scala. Can you

tell me what you learned from your time working on Scala that was applicable to your work on
Sorbet?

[00:48:22] DP: Before joining Stripe to work on Sorbet, I was working together with Martin

Odersky on the project called Dotty that today going to be called Scala 3. Together with Martin, I
wrote a Ph.D. thesis on pretty much how do you write a fast and maintainable compiler? My

area of research end up being very closely related to the project of Sorbet, and thus has
benefited substantially and that a lot of things that were done on Sorbet essentially inspired

about the solutions and the problems that we’ve seen in Scala.

[00:48:59] JM: Stripe itself uses some Scala and it also uses some Go. What are the places
where Stripe uses those backend languages? Languages that are not Ruby?

[00:49:10] DP: Recently, we’ve also seen some other languages be commonly used at Stripe,

such as Python and Java, and all of those languages have their own pretty specific place at
Stripe. Scala is most commonly used for big data processing, things like Hadoop and Spark. If

you were to do any kind of big data computation at Stripe, the recommendation is you use Scala
for it.

Go at Stripe is used for things that need to handle a lot of connections, such as we have a

Veneur, which is an open source project, which is a project that we open sourced that
implements over the ability system of Stripe, which forwards metrics at Stripe.

Go is really good about handling a lot of connections and things like Ruby with a global

interpreter log are much worst in this regard. Python in Stripe is used for machine learning with,
so far, PyTorch and Tensorflow, and Java is used for some [inaudible 00:50:04] things. All of

those languages have specific area of usages. We’re trying to have a very opinionated position
so that we can rip the benefits of synergy by using the same language to use similar problems.

[00:50:19] JM: Stripe is not the only company that has used Sorbet. As you’ve communicated

with other companies, how does their usage of Sorbet compare to how it’s used at Stripe?

© 2020 Software Engineering Daily 21

SED 1033 Transcript

[00:50:30] DP: That’s a great question. Before Sorbet was open sourced, we actually had a

close beta where more than 40 companies got access to Sorbet and we open sourced it after
the experience of those companies became pretty good. We’re verifying that Sorbet would be

used not only at Stripe, but also in other companies, and this was the condition that we put
before ourselves as a precondition for open souring.

Since then, we know of hundreds of companies who have adapted Sorbet. Most notably, big

players such as Shopify, Coinbase and many others. [inaudible 00:51:05] has wrote a blog post
about their experience adapting Sorbet. Things that we found that are different in the way how

they use Sorbet are many of them disable their runtime enforcement. Runtime enforcement has
some runtime overhead. At stripe, we had a metric that controls it and if it was to be hired in 7%

by [inaudible 00:51:26], and I’ll get paged.

In some companies, paying cost of 7% of performance might be considered too high for the
guarantees additionally provided by runtime type system given that you’ll already have

substantial guarantees provided statically. Another difference is many of those companies use
Rails, and I want to give a callout for the Sorbet Rails project built by Chan Zuckerbert initiative

that makes it much easier to adapt Sorbet in the Rail codebase.

[00:51:57] JM: All right. Well, just to close off, what aspects of Sorbet are you working now?
What are your projects for the future of the project?

[00:52:06] DP: At Stripe at this point, Sorbet is considered a success. The areas where there’s

active work in Sorbet area are further improvements in the IDE where we want to support more
features and support them faster and being able to provide faster trade iteration in our

codebase, in our particular, as our codebase grows.

In the core Sorbet in which [inaudible 00:52:29] the ongoing work is about making sure it
continues scaling together with our codebase where there some areas such as namer which at

the time made sense to write in a single-threaded way, but now as our codebase has grown, we
want to make them faster.

© 2020 Software Engineering Daily 22

SED 1033 Transcript

At this point, at Stripe, Sorbet is a success and thus the project is mostly on maintenance mode

and we’re working to deliver value elsewhere. Similarly, the adaption of Sorbet, they’re on 90%.
We’re not that [inaudible 00:53:02] it anymore.

[00:53:04] JM: Actually, one more question, just because I’m curious. What have you moved on

to focusing on within Stripe now that you’re work on Sorbet is somewhat complete?

[00:53:13] DP: My work personally has changed substantially since then. Since then I became
a pillar tech lead. So I’m helping the entire wider team of [inaudible 00:53:21] of people have

alignment with a wider org, but the biggest project that I had since Sorbet is like a test
execution, where we’re intercepting fi le reads on the [inaudible 00:53:34] level in our tests to

see which fi les can be impacted by a diff that you’re sending into our CI. Thus, which tests
conservatively need to be rerun. This has substantially sped up our CI time and brought us to

the lowest CI time in years and saved a lot of engineering waiting time on CI and also a lot of
money on just CI infrastructure.

[00:53:59] JM: Awesome. Well, Dmitry, thank you for coming on the show. It’s been really great

talking to you.

[00:54:03] DP: Thank you, Jeff, for hosting this podcast. It was a pleasure to talk to you. Have a
great day.

[END OF INTERVIEW]

[00:54:17] JM: When I’m building a new product, G2i is the company that I call on to help me

find a developer who can build the first version of my product. G2i is a hiring platform run by
engineers that matches you with React, React Native, GraphQL and mobile engineers who you

can trust. Whether you are a new company building your first product, like me, or an established
company that wants additional engineering help, G2i has the talent that you need to accomplish

your goals.

Go to softwareengineeringdaily.com/g2i to learn more about what G2i has to offer. We’ve also
done several shows with the people who run G2i, Gabe Greenberg, and the rest of his team.

© 2020 Software Engineering Daily 23

SED 1033 Transcript

These are engineers who know about the React ecosystem, about the mobile ecosystem, about

GraphQL, React Native. They know their stuff and they run a great organization.

In my personal experience, G2i has linked me up with experienced engineers that can fit my
budget, and the G2i staff are friendly and easy to work with. They know how product

development works. They can help you find the perfect engineer for your stack, and you can go
to softwareengineeringdaily.com/g2i to learn more about G2i.

Thank you to G2i for being a great supporter of Software Engineering Daily both as listeners

and also as people who have contributed code that have helped me out in my projects. So if you
want to get some additional help for your engineering projects, go to

softwareengineeringdaily.com/g2i.

[END]

© 2020 Software Engineering Daily 24

