
SED 1373 Transcript

EPISODE 1373

[00:00:00] KP: Angular is a free and open source web application framework. It's maintained by 
the Angular team at Google. It's used by millions of web applications and has a strong 
ecosystem of core contributors and library builders. 

In this episode, I interview Minko Gechev, Developer Relations Lead at Google. We explore 
several aspects of open source software development, Tensorflow.js, Angular, and a few other 
things worth sticking around for.

[INTERVIEW] 

[00:00:30] KP: Minko, Welcome to Software Engineering Daily.

[00:00:33] MG: Thank you for having me.

[00:00:34] KP: Can you tell me a little bit about your journey as a software developer?

[00:00:38] MG: Sure. Should I start from the very beginning when I wrote my first program? Or 
are you mostly interested in what I'm up to right now?

[00:00:45] KP: Oh, I love the full journey. If it starts in QBasic, or wherever, let's do it.

[00:00:49] MG: Okay, yeah. It started in high school. Back then, I didn't think that a normal 
person can write a program and send instructions to the computer. I thought that this was 
incomprehensible for me, literally. And I had classes in software developments. In Bulgaria we 
call it informatics. I'm from a small town in Bulgaria, Eastern Europe. And we use Pascal to just 
implement a very simple Hello World application. So this was fascinating. This was kind of mind 
blowing. 

After that, we move to a little bit more advanced programs, for example, just some equation 
solvers. And from there, I got really excited and passionate about software development. So 

© 2021 Software Engineering Daily 1



SED 1373 Transcript

with my high school teacher, he knew he knew PHP, JavaScript, and SQL. So we created the 
entire web system, which use MySQL’s database. 

It took me a while to understand what's actually going on. But I was really excited to know that I 
can create things. So this turned into an obsession. I remember how I used to dream that I'm 
creating software and I was solving some of the issues in my head or in my dreams, literally. 

After that, I went to college, where it was a pretty constructive environment, a lot of people with 
similar interests like mine. I was really into Linux back then. So I was spending thousands of 
hours configuring my vimrc and my .files, which are still somewhere online. Went into 
[inaudible 00:02:25], into C#. So, yeah, I had to have a virtual machine on my laptop back 
then. C# had more specific requirements. And eventually, I got introduced to open source from 
some local communities where I found the whole idea of open source to be very interesting. 

Originally, I was probably more excited about the visibility and the validation that you're getting 
out of it. But over time, I saw more and more the value that it brings. So I continued contributing 
to open source around my open source contributions. I started a company here in Silicon Valley, 
and ended up moving to work on open source full time at Google about three years ago.

[00:03:11] KP: What’s specifically about open source is attractive to you?

[00:03:16] MG: A couple of things. It gives everyone the opportunity to collaborate and learn 
from some of the best software engineers out there. As a college student, as a university 
student in Bulgaria, I was really interested in growing my skill sets. And there were a lot of great 
software developers around me. But still, there were software projects on another level, such 
as, let's say, the Linux Kernel, or back then, AngularJS, which was developed by companies like 
Google or large organizations like Linux Foundation. And I was really able to collaborate with 
some people who are so much invested into software, and I was able to get a lot of their ideas, 
learn from them, gets cold reviews. Get pretty much mentorship for free just by helping out with 
the tasks that they don't find too exciting, that we're waiting for contributors in their issue tracker. 
This was one of the things. So it gives equal chance to everyone. It doesn't matter where you 
are in the world. If you're passionate enough and, I'll say, motivated, you can work with some of 
the best software engineers out there. And you can get free mentorship. 

© 2021 Software Engineering Daily 2



SED 1373 Transcript

And the second thing is from inspirational perspective you’re getting. You can get inspired by 
open source projects. Everyone is passionate about something particular. And there is a chance 
that you would find something about this particular area, this specific domain on GitHub. So you 
can look up topics that you find interesting. And I'm sure there will be something on GitHub that 
is going to align with your interests and is going to bring you some extra inspiration.

[00:04:49] KP: Well, to be working on open source full time sounds, in many ways, like a dream 
job. But from a naive perspective, it seems like it doesn't make sense for Google. Why would 
they pay you to write the code and give it away?

[00:05:01] MG: Yeah, that's a really good point that you're raising here. There are quite a few 
benefits for Google itself. None of them are really directly related to the revenue that an open 
source project would produce for Google. All the benefits are pretty much transitive. For 
example, it increases the reputation of Google in the software development community. If we're 
developing popular platforms or popular products that are used by millions of developers, this 
increases the trust in the brand. Also, it helps us hire people. We’re using the project I'm working 
on at Google Angular. We're using it heavily within the company. And if we make this project and 
we maintain this and it has higher adoption externally, then these developers could move to 
Google eventually and become productive from day one. 

And making the project open source has a very critical part of the adoption itself. These are just 
two of the benefits. And there are many others. Developers in the open source community are 
constantly creating new libraries and resources in, let's say, for example, blog posts or even 
answers on Stack Overflow that are benefiting Googlers and external developers as well. 

And at the same time, it's also a good opportunity to give back to the world in certain aspects, 
for example, software engineers. Inspire them by sharing the whole implementation for free. 
This inspires other projects in the ecosystem, which are using similar ideas or solving similar 
challenges.

[00:06:41] KP: And what are some of the contributions you've made to Angular?

© 2021 Software Engineering Daily 3



SED 1373 Transcript

[00:06:45] MG: Originally, the very first contribution I made was adding just a colon, and 
missing colon in a comment. That was back in 2012 I think. Since then, I remember how 
nervous I was when I was opening this pull request, because I didn't think that people from 
Google, they could miss a semicolon. So I spent a couple of hours opening this pull request. 
Closing it, and after that, reopening it, because I messed up something around like the git 
history. I don't know what I could mess up with just a single line of change. But I think I did. 

And after a couple of years later, I started doing absolute AngularJS back then. And I found that 
there are some gaps in best practices. So I implemented – Rolled style guide with best 
practices, which turnout to you've got quite some traction in the community. And later on, when 
the team moved to Angular, started developing the new framework, Angular with TypeScript, I 
worked on a book and there were literally no resources on learning Angular back then. So I had 
to get familiar with the code base with implementation in order to get better understanding of 
how the whole thing works. 

And to get better understanding of the implementation, I started contributing different, let's say, 
small feature requests or issues. I was getting this mentorship from Googlers, who were helping 
me with reviewing my pull request, and I was helping them back with fixing some of the issues 
that they were considering, let's say boring, or that they were not as excited in fixing. 

And from there found other gaps in the ecosystem. For example, build a tool for static code 
analysis for Angular, which later ended up being adopted by the Angular CLI and by Google 
itself. And that's how the Angular team got interested in me and invited me to go through the 
interview process.

[00:08:39] KP: Very cool. Well, on paper, it seems like if you can make a pull request, and it can 
be accepted, then you've made a change. But I imagined for a project as big as Angular, there 
must be a little bit more process to it. Can you speak to, I don't know, any of the internal ways 
that things are looked at when pull requests come in? Or maybe how you encourage people to 
submit good pull requests?

[00:09:02] MG: Yes, yeah, that's an excellent question. That definitely could be really 
challenging, especially when someone wants to implement a massive feature that is not 

© 2021 Software Engineering Daily 4



SED 1373 Transcript

necessarily very much related to the vision that the team has for Angular. This could be pretty 
frustrating. I can imagine how someone can spend months in implementing something that 
they're really passionate about, really complicated. And at the end, this pull request can be well-
structured but may not align with how Angular is envisioned to grow in the future. 

So the couple of guidelines here are, first, if there is a large feature proposal from someone, 
they should, for sure, first, go with opening a feature request that would go through discussion 
from the Angular team and from people from the community. We recently introduced a feature 
request process that includes voting. So if the feature request gets enough votes, then we're 
going to consider it. We're going to see whether it aligns with the future version of Angular. And 
we're going to decide how to move forward with it. So that's very important part of the process, 
for sure. 

If folks don't necessarily want to contribute with a large feature, they can just open a pull request 
for a small issue, let's say. And the important part there is to first file the issue or find an existing 
issue, because this might be unexpected behavior. Who knows? And from there, open a pull 
request or for states that they would want to be working on a specific thing so that there no two 
people in parallel who are developing it. Because this way, the effort could be wasted as well. 
And make sure there are no already existing pull requests with the same topic. 

And from there, we go through a regular triage process. So we're going to look at the pull 
request. We're going to probably have quite a few back and forth because of coding style or 
because of backward incompatible behavior. And eventually, we're going to merge the pull 
request and it is going to go in and it's going to be used by literally millions of developers.

[00:11:09] KP: So developers have lots of choices today, especially on a greenfield project. 
Why did they pick Angular?

[00:11:16] MG: A couple of the reasons for that are that's Angular accounts opinionated. So if 
you'd want to build an application with Angular, you must use, for example, TypeScript. We 
believe that static typing is a very important part of the development process, especially if you're 
planning to build a production app that is going to scale. Angular also comes in pretty 
opinionated. I'll say that there are still a lot of decisions that could be made to make it even 

© 2021 Software Engineering Daily 5



SED 1373 Transcript

more opinionated. But we're trying to find out the right tradeoffs, the right line from where we are 
opinionated enough and where this opinionation is causing inconveniences for developers. 

But Angular is definitely opinionated. We have a platform that integrates well together. And we 
have the integration of this platform with the Angular style guide, which discusses best practices 
such as, let's say, file, directory structure, naming things, and so on, and so forth. These are two 
of the benefits. Others are that we have a pretty massive ecosystem right now. There are 
literally tens of thousands of developers who are building libraries for Angular. 

And Angular is pretty stable. As I mentioned, it is used by thousands of projects within Google. 
And every single change we make in Angular, we're testing against all these thousands of 
projects. If we break any one of them, this means that the change was backwards incompatible. 
And we either rollback or we work on making it compatible, if that's what we want. 

So stability, opinionation and ecosystem, these are some of the main benefits. And from there, 
there are others as well clearly. At Google – So we are working with a lot of web platform teams. 
So we're making sure that Angular is always on top of the latest web standards. For example, 
we adopted Trusted Types. And we were pretty much the first framework that adopted Trusted 
Types, which is a spec that allows to take advantage of a web platform feature that prevents 
cross-site scripting attacks. And the investment in backward compatibility also allows us to 
implement – Requires us to implement the ng update experience. So it's a single command 
where once we release a new major version of Angular, we are encouraging everyone to run the 
ng update command so that they can get up to date with the latest features, bug fixes, and 
security fixes in Angular.

[00:13:45] KP: Well, when it comes to static typing the, I guess, number one reason I hear 
people give for why you want to choose something statically typed is because a lot of errors will 
then be found at compile time rather than at runtime. And of course, you want to get those 
errors sooner. Is there anything else that I'm missing? Are there reasons why static typing 
makes Angular a better choice for a lot of groups?

[00:14:07] MG: Yeah, static typing definitely allows us to catch a lot of issues. Something that 
we often don't appreciate enough is the development experience improvements that static 

© 2021 Software Engineering Daily 6



SED 1373 Transcript

typing is bringing. For example, auto completion is great with TypeScript. We know all the 
different fields and their types, and all the different objects that we're accessing. So this is 
definitely a great benefit. And many of the issues we were catching, even as part of our 
development process, we don't have to run computation so that we can catch potential issues. 

Static typing also allows us to build more advanced tooling based on the type information that 
we have. For example, in Angular, the ng update experience is allowing us to make very 
advanced refactorings only because we understand the whole type information within the 
project. And type systems are also very, very convenient for automatic generation of 
documentation or reasoning about the source code. And clearly, also refactoring. We can 
rename a field. And based on the type information, this change can propagate across the entire 
project. So there are quite a few benefits of static typing. 

And as you as you said, catching issues ahead of time is one of the most tempting benefits. 
There was a research by Microsoft, I believe, and a couple of folks in the academia where they 
were comparing how would open source projects that were implemented in JavaScript would 
have benefited if they had a type system, if they were implemented in, let's say, Flow, or 
TypeScript? And I think they discovered that at least 10% to 15% of the issues in their issue 
tracker would have been caught by the type system ahead of time. So that's a pretty significant 
benefit.

[00:16:03] KP: Maybe the motivation to create TypeScript even. I don't know. 

[00:16:08] MG: Yeah. 

[00:16:09] KP: Well, I think most listeners will certainly be familiar with Angular, even if they 
haven't had the opportunity to go use it themselves yet. I'm not quite as confident everyone will 
know what guest.js is. So I wanted to ask you, what is guest.js?

[00:16:24] MG: Yeah, guest.js is a project that I – It’s pretty much a conference-driven 
development that caused its implementation. Back in, I think, maybe 2017, I wanted to speak on 
a conference at Oxford Render. And I was thinking, “What cool think can I build for this 
conference? Can I start prefetching crowds in the application by using machine learning? It’s 

© 2021 Software Engineering Daily 7



SED 1373 Transcript

like, “Maybe I can. Let's figure out how to do that.” And I applied for the conference. My talk 
ended up being accepted. So I had to figure it out. 

I remember I was here, in the Bay Area, when like hanging out on a dinner with friends and with 
a colleague. Back then, actually, he was not a colleague of mine. He was just a person I really 
admired in the open source community, [inaudible 00:17:17]. I chatted with him and I 
mentioned that that's something that I'm planning to build. He said, “Well, yeah, I was thinking 
about this too. And I have been doing some high-level exploration.” 

So a couple of weeks after that, after spending like hours and just writing things in my notebook, 
I figured out how we can use Google Analytics in order to build some kind of a data analytics 
model that we can later on use in order to prefetch routes in an application and make it in a way 
that is pretty much developer ergonomic so that people can add one Webpack plugin to their 
Webpack config, specify their Google Analytics View ID. And from there, everything will happen 
automatically for them. 

And yeah, I wrote a blog post explaining code of theory behind that. It was a lot of fun to figure 
this problem out and make it work with popular frameworks such as Angular. Back then, the 
original framework we support with guest.js was actually Gatsby, which is a React-based static 
site generator. And we also introduced support for Next.js and Nuxt, which are respectively 
React frameworks. 

Later on, Addy ended up sharing this project as part of his web talk on Google IO 2018, which 
was I felt pretty excited. That was before I joined Google. So listening his talk online, hearing 
him talk about guest.js was like a dream come true back then for me.

[00:18:53] KP: Very cool. Well, it sounds very easy to set up for a developer. I'm wondering if 
we can explore what's going on under the hood. What is being guessed?

[00:19:02] MG: Yeah. So depends on the implementation right now. Since I joined Google, we 
explored this topic even further with the TensorFlow.js team. And we're doing more accurate 
predictions. I can talk about both implementations. I can start with the original implementation of 
guest.js. And after that, we can move on to the more advanced one. 

© 2021 Software Engineering Daily 8



SED 1373 Transcript

So what happens internally is when someone runs engine build, let's say, in the context of 
Angular or npm run build, we're, first, with OAuth, requesting access to their Google Analytics 
data based on the View ID that they have specified. Once we fetch this data, we're going to 
have topples. In these topples, we're going to capture how many people went from page A to 
page B. And based on this information, we can build a very basic prediction model, very basic 
predictive model which calculates the probability for one person to go from page A to page B, 
rather than to page C. 

Once we have this information, we can embed it into the main application bundle and later on 
introduce a small runtime that either takes that the user is navigating from one page to another, 
or they have navigated from one page to another already. We can look at which are the most 
likely to be visited next neighbors and we can prefetch the corresponding JavaScript bundles. 

That's pretty much how it works on a high level. There are quite a few challenges in the 
meantime how we can make sure that the model that we're building is good enough so it doesn't 
add a high-performance penalty to the user's application. And the second challenge is how we 
can map routes that we're getting from Google Analytics to actual JavaScript bundles, because 
this is not a trivial problem to solve.

[00:20:57] KP: Yeah, both are interesting. If we could unpack the routes and bundles challenge 
first.

[00:21:03] MG: Sure, yeah. So it's frameworks. We usually have routing. And the declarations 
of the routes within the application, they usually map pretty much one to one with the routes that 
we have in Google Analytics. For example, if you have, let's say, page/a, we're going to have a 
route called /a that points out to a particular JavaScript file. If we have a route called, let's 
say, :id, this is probably going to be a placeholder. So there is going to be a route parameter 
here that could map to a variety of different pages in Google Analytics. But this is still something 
deterministic. We can still figure out to which routes this route declaration eventually maps to. 

Now, once we have the route and the corresponding JavaScript entry points that needs to be 
loaded for this particular route, we can plug into the build process and figure out what is the 

© 2021 Software Engineering Daily 9



SED 1373 Transcript

name of the bundle, JavaScript bundle that is associated with this entry point. And we can 
transform the graph that we're getting from Google Analytics or just probability probabilistic 
model, let's say, from which corresponds to which pages are likely to be needed from a given 
page, to which bundles are likely to be needed after a given bundle is already loaded. That's 
pretty much how it works on a high level. It pretty much involves some static code analysis. And 
since JavaScript routers, they could be pretty dynamic. We can have the declaration of the path. 
It could be a concatenation of strings, let's say. The path could be the string/ plus the string 
concatenated with the string A. This also involves some partial evaluation. So as part of the 
build process, we're going to look at the source code and to try to evaluate it to something, to a 
static value, to a literal. I guess that's on a high level. I might be getting into a little bit like too 
many details. The implementation is also available on GitHub.

[00:23:15] KP: Gotcha, gotcha. Yeah. Well, machine learning can take a variety of different 
forms. But I think the stereotypical one people think of is you get some raw data. Maybe you do 
some feature engineering. Now you have a training set, and hopefully some objective function 
you want to predict. Is that what's going on here? Or is it a different flavor of machine learning?

[00:23:36] MG: In guest.js we're using a very simple Markov chain model. So not necessarily – 
Nothing really too advanced. It is a very simple matrix, which predicts pretty much the values in 
the matrix is what is the probability for the user to go from route A to route B? That's it. With 
TensorFlow, we explored deep neural network that we built based on the same information. How 
many users went from – Actually, there, we consider those who user identifiers so that we can 
personalize the predictions for a particular user. There, we use the more advanced pipeline 
where we're taking the data from Google Analytics, piping it to MapReduce where we're 
bouncing is to TensorFlow extended, building a TensorFlow model where the different features 
or different variables, let's say, or like features in the model or the user identifier and the 
navigations that they have performed. And this TensorFlow.js model, TensorFlow model, we are 
wrapping it into TensorFlow.js S and running it into the browser.

[00:24:48] KP: Very cool. Do you see any major performance differences between the Markov 
approach and the TensorFlow approach?

© 2021 Software Engineering Daily 10



SED 1373 Transcript

[00:24:55] MG: Yeah. With the Markov chain, the payload of the model is way smaller. And also, 
at runtime, we don't really have to invoke a complicated neural network, which needs to perform 
some GPU calculations. We can just perform a very simple constant lookup. That's it. So I'll say 
that in the majority of use cases, when the very high level, the very high accuracy is not critical. 
People can just go with Markov chain. 

Another great advantage of the Markov chain is that, for every bundle, we can just have the 
corresponding row of the matrix, of the matrix embedded inside of it. So we don't have to ship 
the whole model as part of the application. We can ship parts of the model in different parts of 
the application. And this makes it even more efficient. That's how guest.js functions currently.

[00:25:46] KP: I guess what is that model? I know there's like the Onyx format that we might 
use if we're going to do some deep learning. TensorFlow has its own formats. How are you 
managing the Markov model in JavaScript?

[00:25:58] MG: This is just one vector currently. It is a matrix. But since we can – Actually, it's a 
map, when I think about it. It is a matrix. But since we're taking different rows of this matrix and 
embedding them into separate bundles, we're just keeping all the neighbors of the particular 
bundle. And from there, we are keeping also the weights or the probabilities for the user to go to 
another bundle. We are removing irrelevant values. And we're also doing some processing of 
the probabilities themselves to keep them short, let's say. Reducing the precision a little bit, 
because we don't want to have decimals with like a couple of thousands of digits for 
performance reasons.

[00:26:42] KP: Interesting. Well, am I correct in saying the goal is really to empower the 
prefetching decision? 

[00:26:50] MG: Mm-hmm. 

[00:26:51] KP: And then what gets the – The next page gets prefetched, I guess. Is that all 
managed through the Webpack integration? Or do I need to do anything as a developer to 
ensure that that goes smooth?

© 2021 Software Engineering Daily 11



SED 1373 Transcript

[00:27:01] MG: It is all done through the Webpack integration, yeah. And it also follows best 
practices. We worked with the Chrome team in order to figure out what is the most optimal way 
to prefetch without causing any frame drops. So we're writing the predictions, even though the 
predictions are literally just a for loop over all the neighbors of the current bundle and removing 
all neighbors that are below certain probability thresholds, which probability thresholds depends 
on the user's network speed. Even though the computation is pretty simple, we're still running it 
in a request idle callback, which is the callback that the browser executes when it doesn't really 
have anything important to do so that we don't drop frames. And we're using also a low priority 
prefetching with link rel prefetch that the browser can prioritize whenever there are no critical 
resources that it needs to download.

[00:28:03] KP: And are there any metrics of success that you look at? Like obviously, if you 
prefetch something, and then I click on that, that's a win. But if you prefetch something, I click 
on something else, is that a loss?

[00:28:15] MG: Yeah, we're not capturing this information so that we can keep the JavaScripts 
and the model as minimal as possible. We have done the couple of – It very much depends on 
how often people redeploy the model and whether they're making significant changes in the 
structure of their applications. We have done a test with a Pakistani job website. It has hundreds 
of thousands of users who are visiting the website every day. And with the pre-aggressive 
prefetching, we reached about 90% accuracy. So that was a decent win. And also it was way 
more efficient compared to alternative prefetching strategies where we're prefetching all the 
JavaScript bundles associated with visible links on the page, let’s say. But still, we can over-
fetch, for sure.

[00:29:02] KP: Makes sense. And is that something a developer might want to fine tune? Or do 
they just trust that Guest is doing the best job it can?

[00:29:10] MG: Yeah, developers can override the weight. So guest.js tries to be adaptive, to 
adapt based on the network speed of the user. So if the user is on an LTE network, then 
guest.js need to be a little bit more aggressive. And there is one probability threshold. For a slow 
3G network, let's say, there is another probability threshold. And for 2G network, there is a third 
one. So there are some default values, but developers can override them if they need to.

© 2021 Software Engineering Daily 12



SED 1373 Transcript

[00:29:43] KP: If I do some major changes to the routing structure of my site, or maybe just 
introduce some new routes that are especially popular, what happens then? Obviously, there 
needs to be a time of adjustment. If the user's behavior changes, how does guest.js respond?

[00:29:59] MG: This pretty much depends on the information from Google Analytics. At first, 
when there are not enough users who have visited the new routes, the information might not be 
extremely accurate. Over time, once you have more data for the user navigation for a pattern, 
so the user is navigating across the application, then the accuracy will improve. So, yeah, it all 
depends on for how long these routes have been up and how many people have interacted with 
them.

[00:30:28] KP: And in deciding between if they want to take the Markov model approach or use 
the TensorFlow model, which as you point out, has the added benefit. It could be coming up with 
predictions that are specific to a particular user, if that's appropriate. How should a team decide 
which way to go?

[00:30:47] MG: The Markov-based approach, currently, it is very magical, I'd say, and his works 
with Webpack version four. So haven’t updated to version five just yet. That's one of the 
differences. And also the Markov model approach, it only prefetches JavaScript. What we 
implemented with TensorFlow.js was a service worker prefetching approach. Because the 
TensorFlow model, it could be – Although it is really well optimized, it could be heavier running it 
in the main thread. So we're running it in a service worker. And the service worker is prefetching 
predefined set of resources in its service worker cache. And also the machine learning, 
TensorFlow pipeline is way more sophisticated with way less automation. So I'll say that I'll 
recommend this approach for developers who were more advanced. They're sure what they're 
doing and they have high-level of confidence that accurate predictive prefetching in their 
website is going to be beneficial for their business.

[00:31:56] KP: So I have always thought that Google Analytics was a somewhat underutilized 
resource for projects exactly like this one, that it's this wealth of data. It has an API. You can 
query against it. Maybe do some interesting real time stuff. Are you aware of other projects? 
Maybe something that inspired guests? Or alternatively, do you have any ideas for how 

© 2021 Software Engineering Daily 13



SED 1373 Transcript

companies could be better making use of this what I'm asserting to be an underutilized 
resource?

[00:32:24] MG: I think there was some prior work before guest.js. Addy, I just mentioned, he 
captured some of the prior investigation in this direction in the readme of the project. That's 
everything that we found. I think some folks were using a little bit more manual approach in 
order to predict the prefetching order and which resources are more critical for prefetching. 

Right now, what I'm thinking is maybe for some recommender systems, this is pretty much a 
recommender system. We’re recommending which bundles might be needed in the future. So 
we're prefetching them. For a little bit more product features, I think the same approach could 
be pretty valuable as well. 

Yeah, generally, the direction that I'm thinking about as in terms of recommender systems. I'm 
sure there is probably way more. But probably that's just a space I'd been focused on over the 
past couple of years actually.

[00:33:21] KP: Yeah, promising route for sure. Do you consider guest.js to be complete? Or is 
there ongoing development?

[00:33:31] MG: Yeah, it’s pretty complete, I'd say. It works better with some technologies than 
others. And currently, it does not support Webpack version five. So I have opened an issue to 
gouge the interest. If people really want us to support the latest version of Webpack, then this is 
something that we can do. Aside from that, definitely, there is always an opportunity to add new 
features. But I think it is in a pretty good state when everything more than this is going to be 
potentially a scope creep. So it is in a good place right now. Works particularly well with 
frameworks where the routing structure is statically analyzable. In particular, Angular, and 
Next.js right now.

[00:34:15] KP: And is there any reason why I might not want to install guest.js. Could my site 
be structured in a weird way where it would have little or no benefit?

© 2021 Software Engineering Daily 14



SED 1373 Transcript

[00:34:27] MG: Yeah. Actually, guest.js is not going to be the first approach without recommend 
to people exactly because even though it has developer friendly experience, the lack of 
Webpack version five support right now and also the fact that people would have to necessarily 
have static analyzable routing structures sometimes, it is just a constraint that people can't 
afford. So a couple of alternative approaches for prefetching that I'll recommend are prefetching 
[inaudible 00:34:59] over a particular resource, or quick link prefetching, which is prefetching of 
the resources associated with links that are visible on the page. These are very easy to set up. 
They work pretty well. Well, at least with Angular, this has been my focus. But I think alternative 
JavaScript frameworks can have their implementations as well. So yeah, that's what I'll go with 
first.

[00:35:27] KP: And do you have any opinions on whether or not features like that the, hover 
prefetch? For example, is there a reason someone would say that should just be baked into 
Angular? Or are there fine lines here between framework and library that you can highlight?

[00:35:42] MG: We’ve been having similar discussions with a team about whether this should 
be baked into Angular. Yeah, maybe it should be. It is, for sure, baked into some frameworks. 
When I was collaborating with Kyle Matthews from Gatsby, I think this approach was baked into 
Gatsby. In Angular, we had an alternative pre-loading strategy that there we call them pre-
loading, which was Preload All that we should eventually deprecate because it is pretty on the 
CPU sometimes with a lot of fraps. I will say that we are not opinionated about this just yet. We 
can consider being opinionated about it. But this also adds extra bite to the production bundle. 
And we're not sure absolutely everyone will be benefiting from it.

[00:36:27] KP: That's a good argument there, yeah. Well, are there any things on the Angular 
side, maybe recent releases or stuff coming up on the roadmap that you're excited about and 
able to speak to?

[00:36:37] MG: Yeah, there are quite a few things that are happening right now. So the biggest 
release over the past year that we did was Angular Dev Tools. It's currently has over 105,000 
people using it, I believe. We are working towards optional engine modules, or standalone 
components. This is a significant change or a simplification of the mental model. People will not 

© 2021 Software Engineering Daily 15



SED 1373 Transcript

have to declare Angular modules. They can just use the very basic component model and 
declare the dependencies of their components within their metadata. 

And this, by its own, unblocks a couple of other proposals that we are exploring. One of them is 
template composition API. So people can dynamically assemble their templates at runtime if 
they need to. Another one is out of band type checking. This is actually something that we have 
explored in the past. Actually, this is not necessarily related to standalone components. What I 
meant to say is more localized component compilation. 

Now, when developers are specifying the dependencies of their components directly in the 
metadata, then we have more explicit dependency graph, which would allow us to make the 
build process faster. So let's say around standalone components, I'm pretty excited about how it 
will reduce the learning curve. And from there, what benefit is going to bring to the developer 
ergonomics and to the build speed?

[00:38:11] KP: Makes sense. Minko, where can people keep up with you online?

[00:38:17] MG: I am most active on Twitter and LinkedIn. So you can find me on both places. 
My username there is mgechev, the first letter of my first name and my last name. And I recently 
started a newsletter, where I'm pretty much – So I've been sharing tips and tricks about 
JavaScript, Angular and development to encode the past couple of years now. And if you're 
following these channels on social media, definitely you're going to get exposed to all these tips 
and tricks. And the in the newsletter, some people just prefer to consume this content in an 
email format. So that's an alternative place you can find it on my Twitter profile as well. 

[00:38:58] KP: Well, I recommend people take a look at that and sign up. Minko, thank you so 
much for coming on Software Engineering Daily.

[00:39:04] MG: Yeah, thank you very much for having me. It was a lot of fun chatting about 
Angular and guest.js.

[END]

© 2021 Software Engineering Daily 16


