
SED 1479 Transcript

EPISODE 1479

[INTRODUCTION]

[00:00:00] AD: Nearly all new tech companies build in a public cloud and established companies are
rapidly migrating applications to the cloud from their on-prem data centers. But this move to the cloud
can lead to a visibility problem. Cloud providers offer not only compute instances, but also manage
services like databases, blob storage, queues and more. It can be difficult for SRE teams and security
departments to understand what is happening across a company's cloud accounts.

Yevgeny Pats is the creator of CloudQuery, an open-source cloud asset inventory powered by SQL.
CloudQuery allows you to ingest and structure the resources in your cloud accounts so that you can
query them using SQL. This allows SRE teams to understand the source of specific resources, while
security teams can ensure compliance with policies. In this episode, we'll discuss CloudQuery,
Yevgeny’s entrepreneurial background, and raising funding with an open source project.

[INTERVIEW]

[00:00:55] AD: Hey, Yevgeny, welcome to Software Engineering Daily.

[00:00:58] YP: Hey, Alex, thanks for having me. Excited to be here.

[00:01:01] AD: Absolutely. So, you're the founder and creator of CloudQuery. Can you just give us a
little bit of background on what CloudQuery is and what it's doing for people?

[00:01:10] YP: Yeah, sure. We started as an open-source project early last year. We started as an
open-source cloud assets inventory. So basically, connecting to all your cloud services, cloud API's,
then striking all the configuration, transforming it, and loading into a relational database into Postgres.
So, maybe you can also think about this as like Terraform, but the other way around, while provisioning
anything, but just extracting all the configuration.

So, kind of like an ETL layer for cloud configuration and we started because we thought like, one
because I didn't find anything like that and I really needed it. And two, because I thought that it's a

© 2022 Software Engineering Daily 1

SED 1479 Transcript

cornerstone to a lot of use cases, in the cloud. There was security, cost visibility, you have like a sprawl
of enterprise closed-source vendors that I think their development teams, like 90% of the time are
implementing closed source version of CloudQuery, and then everyone has their own small, closed
source version, and there is no like, open source. So, we decided to go the open source way, and this
also gives the ability to, like users to also contribute back because there are infinite number of API's out
there, and there is no one vendor that can support all of that. The only way that we thought, we’re able
to solve it is to build the open source way and kind of like the similar reason why Terraform is open
source, right? Because you want to give people the ability to contribute back something that they need,
and the vendor just didn't get into, implement it yet. I can talk a bit later about some of the use cases,
specifically in some of our users, and how people like use us and deploy it.

[00:02:56] AD: Awesome. I love that description of a reverse Terraform, and I think the open source
nature of it is interesting. I want to get into that later, especially like as a funded company and open
source how we do that. But I think you make a great point where if you're building this framework of sort
of how do you sort of input resources, get them into this thing to make them queryable, then that open
source nature of it just allows so many people to come and do the long tail of things, whether it's a
different cloud provider, different type of resource that other people aren't using, they can they can sort
of get those in there. So, I love that.

You said, as you're looking to make this, you wanted something like this, and you couldn't find anything
like it. Tell us about that. Why did you want this to exist? Getting your resources into a relational
database? What were you looking to do with that?

[00:03:37] YP: When the industry around like security, DevOps, cloud, last 12 years, those SaaS apps,
I was also on the other way, not only from the vendor side, but also like from the builder side. It's kind of
like close to me. But the other thing that the big shift that I saw at my first startup was super random.
And that may be like a long answer to a short question. But my first startup was super enterprise, like it
was security, top down startup, and I've been there like for two years, but then I understood that I don't
want to run the company where there is get a demo button.

So, last five years, I was like focused solely on the developer space, because for me, all the classic
vendors didn't make sense anymore. Because I wouldn't use it from the user perspective, right? But a
lot of the companies still in the security space, are like top down. You can also go to Palo Alto

© 2022 Software Engineering Daily 2

SED 1479 Transcript

Networks, Checkpoint, but also startups, especially like in Israel. So, I said, “Okay, let's see, what's the
dev alternative, open source alternative”, and I didn't find any. That’s basically, how I started – there
were like a few like open source projects, trying to tackle it, but nothing like that really hit it out of the
park with like good architecture and good adoption.

[00:05:00] AD: Cool. You mentioned it’s open source, you have a bunch of different providers and
things. Can you give us a sense of like what it supports currently? I imagine you’re being the major
cloud providers, but what other sort of providers and things? And then how deep are the resources
within some of those providers?

[00:05:16] YP: Yeah, so we definitely started as like focused on the big three cloud providers like AWS,
GCP, Azure, like DigitalOcean, and a few smaller providers. But yeah, the focus was really on the big
cloud providers. We have also third-party providers, for example, like the Onyx Cloud is maintaining
they're on integration and own provider, which is pretty neat. We’re trying to expand that, unhealthy
users to do that more easily as we go, for better developer experience, but we already like saw some
good third-party integrations to CloudQuery. And regarding the depths of that, yeah, we try to build
pretty deep and like support as much as API's as possible, especially like an important one. I think, in
AWS config, we support potentially, like even more, and the same thing in GCP, even more resources
than like AWS config, or in Google Cloud asset inventory, which is like the enterprise, like the cloud
solution, because actually, their team, they have the same problem. They work with the same API's and
their solutions is closed source, so they hit the same. So, even though they are in Google, or in AWS, it
doesn't help them to cover all their API's.

[00:06:30] AD: I think that's so interesting. It's the same pattern we've seen with Terraform, over the
years, where Terraform has better coverage than CloudFormation. I think the CloudFormation team and
things are getting better about that. But it's just amazing. When you have that open source nature.
Someone in the community is going to want to contribute that so they can use it and it's just pretty
amazing.

Okay, so imagine I'm someone that I have a lot of resources in AWS, I want to get a sense of this, I pick
up CloudQuery, how do I get started? What's that process look like from getting started to getting it into
a relational database? What's happening there?

© 2022 Software Engineering Daily 3

SED 1479 Transcript

[00:07:00] YP: Yeah, so there are kind of a few onboarding paths, really like the first step, usually just
to Go. So, it's written at Go on single binary and kind of like have similar – actually, really similar
architecture to Terraform. We use a lot of the underlying Terraform libraries, like it's called Go plugin.
So, to download all the plugins and run them locally, but yeah, it's a single binary. You can download it
locally and then you just run like Postgres in the Docker in a local container. So, we can load all the
information in your local Postgres. You're connected to your AWS account and that's basically it. We
support also AWS specific features like AWS orgs. So, you can connect us to – read all your audit
permissions so we can extract all your accounts under your organization, go through them, extract all
the configuration across all your accounts, and people around us on like thousands of accounts. I think
the biggest one, at least on GCP that we saw from one of our users is like tens of thousands of GCP
projects. The nice part is, it's really about like rebuilding those use cases on top of a data platform. So,
once you have the data there in the relational like structured way, then you can connect it to whatever
you use, like Grafana. Some people connect us to Grafana, to MetaBase, to Apache Superset,
whatever you have, it doesn't matter, just the database.

[00:08:33] AD: Yeah, cool. Once I've got all my resources into CloudQuery, what are some of the
practical use cases or maybe even teams or different things that people are doing with that data?

[00:08:44] YP: Yeah, so it's mainly split across like two teams that DevOps and SRE teams, kind of like
fall under the same bucket and the second one is more on the security side. Sometimes, it's also like
the DevOps team also thinks that. But on the DevOps SRE team, it's usually like just around monitoring
and visibility. So, you set up alerts, for example, in Grafana, or MetaBase, sending you either like daily
reports, or daily – or reports when something changed when you have like, for example, more computer
that you want to or some API where you have API's enabled, that you don't want to be enabled at some
project. Whatever rules, like you can set up any rules with SQL. Basically, you use SQL as your rule
and query engine.

The second use case, yes, around security. So running, putting the guardrails is again, the standard
query language, and we also implemented something called quality policies. So actually, just another
construction and dump of SQL, so it just like you're on the same SQL, and you can run them like as a
batch, you put with all your policies or rules, and notifications and so on. Another thing on the DevOps
side that we saw, the use case that we saw quite a bit is not only giving this visibility to DevOps team,
but also giving this visibility to the developers. So, let's say you are like thousand people in the

© 2022 Software Engineering Daily 4

SED 1479 Transcript

organization and you have thousands of accounts, not everyone has access to all the accounts, and
they shouldn't. But also, for example, you're debugging something, or you're seeing something in the
logs. Now, you want to understand like, okay, where this in like – in which quality it is, like this IP is
located, and then like, in which project, who should they reach out to? Where it's connected. So, just
kind of am infrastructure search use case, I would say for developers.

[00:10:43] AD: Nice. I love that. Again, I wanted to get just a sense of scale for queer users like how
big are these projects are having? You're saying people with 10,000, GCP projects, how many
resources are we talking about there? I mean, are people pushing 100,000 million? What's that sort of
look like?

[00:11:00] YP: We sell, 100, 200, 300, and thousands. So, most of our early adopters that we saw,
coming to CloudQuery is usually big companies that, yeah, they don't have like a good enough
alternative, basically. This is also partially why we built it. But yeah, companies like Tamp, who is vastly
another legal organization, using us in production, which is good. And yeah, we're working on bringing
more.

[00:11:29] AD: Yeah, absolutely. I imagine just like with 10,000 projects, and trying to figure out which
S3 bucket or like you're saying, which IP address and who owns that is just quite the task unless you
have something like this. So, with that notion of scale in mind, I want to talk a little bit about the
underlying technology. I know you mentioned Postgres, things like that. I guess, were there any
particularly hard problems that you had to design for as you're going either in the fetching part, in the
storage and querying? What was hard and tricky about this?

[00:11:59] YP: Yeah. So, there were like a few tricky things to solve and I think we are also still solving
a lot of them and trying to build like a lot of focus on the developer experience. Because actually, we
have two types of users. One is really our users or developers. People who use essentially, the
phosphorus or deploys, the DevOps team, the security team, or just the developers. Two, it’s actually
real developers of our like SDK. So essentially, we build like an SDK where you can build your
providers, and we have some users that already did it. And then it's a completely different developer,
right? So, you have to make sure your API’s and SDK is in a very high production rate, so people can
really use it and it can scale.

© 2022 Software Engineering Daily 5

SED 1479 Transcript

The other thing is, like the developer experience and the usage that it can support like, high scale
accounts. The quality, we put a lot of focus on quality over quantity. Especially, because it's a dev tool,
self-serve dev tool, where we don't have any sales team to support it, right? You come to our GitHub,
you try it, either it works and then you stay. On the contrary, had it not, then we don't know about it. Like
some of the hard problems, yeah, as you say, is around like the fetching. So, we put a lot of work into
scheduling and optimization, and how to fetch kind of the most resources and short amount of time.
That was one.

The second one was really designing and building CloudQuery SDK from the developer perspective.
And then putting a lot of effort also internally and also for external integration, but also internally, how
do you scale that in terms of both in development velocity and testing.So, okay, we want to increase our
team and we want to support more API's. I see pull requests. It's a lot of API support that we want to
add, and we want to be able to add them fast, or to other people to contribute. So, I need to know that
okay, it works and it's easy to write tests for that. And like testing infrastructure is quite tricky, so we
have Terraforms to test it, and we tried to make really, the contributor developer also quite easy, and
we’re still working on making it even easier. But that was a lot of the engineering and that's still like
going on and we try to put focus on.

[00:14:28] AD: Do you have a lot of integration test against live accounts with real resources? I feel like
Terraform had that problem just expense wise of like creating and tearing down resources.

[00:14:38] YP: Yeah, we had. I think it's partially solved. So, the best thing that we found, like, for every
resource that we create, we want to test it against live environments. So, we arrived at – the contributor
has to write Terraform for that, but we deploy this resource in real environment, and then we test
against that, okay, we already to fetch like all the data that we're expecting too. And actually, we are not
even tearing this down, because we want people to be able to – we don't want people to wait for this
resource to be created, which will be extremely lengthy and we don't want to do nightly task of you
committed something in the morning, and then it broke in the night, and getting into all this flakiness, so
it's just there. Yeah, apart from maybe caught – things are very expensive that we're skipping, we try to
have live and test environment, and maybe asset will grow. We'll have to think about like something
smarter. But for now, the cost is not that high. So, we're just trying to keep it simple and test it against
real environment.

© 2022 Software Engineering Daily 6

SED 1479 Transcript

[00:15:46] AD: Yeah, I wonder if the clouds would help you out with some credits on that, too. I imagine
you're helping with adoption in different ways or reducing friction. So, it'll be interesting to see. You
mentioned you spend a lot of time on scheduling and efficiently pulling things like that. If I have an
organization that has lots of accounts, that has 100,000 resources, how long does that CloudQuery
fetch take to go and pull those up? Is that minutes? Is that hours? What’s that look like?

[00:16:14] YP: Yes. So, one, it depends on the computer that you have and number of CPUs. That’s
the ETL workload. I think, like one of the reasons that we also chose those, that's released in terms of
distributions, rather than just one binary without dependencies. I think, it was one of the main reasons.
But the second one is actually, it's very good in concurrency. So, you can just like create very
lightweight routines and we use that. So, I think if you have like strong enough machine, let's say even
like eight CPUs, maybe we can go like 16. But you can get it maybe even under an hour. I will say
that’s the ballpark, if you have like really that extreme big accounts, which should work because you
can even fetch it. We saw people fetch it and we also fetch it in every six hours. It's usually good
enough for us. Some people do it like every two hours. We didn't see a lot of requests to have real time,
completely real time. So, if you have two hours, it usually should be good enough.

[00:17:17] AD: Yup. Are most people hosting CloudQuery somewhere in the cloud, or do you a lot of
people just run on their laptops and checking it there? Have you seen that?

[00:17:25] YP: Yeah, exactly. So, the first kind of onboarding guys to run locally, just to play with it, see
the defaults that it answers your use cases, whether it's search or visibility or security roles. The second
one is deployed on kind of production and to run periodically. You tend to run code a lot of ways. So, we
just give some guidelines and pre-made deployments for Kubernetes, just to consistent and not like
support a lot of different types of deployments. So, we have popular culture, which you can deploy on
your Kubernetes and fool around and the cron job, and you can connect it to your RDS. But we also
provide Terraforms for GCP and AWS, to provision the infrastructure is you need – if you need actually,
together with the Kubernetes, as well. So, you have like one kind of like, one deployment, so you don't
need to jump from Terraform and Helm, but actually, what the TerraForm is doing is deploying the Helm
after it provision the EKS cluster, the database, or in GCP. It’s the key in the cloud SQL.

© 2022 Software Engineering Daily 7

SED 1479 Transcript

[00:18:34] AD: Does CloudQuery support Kubernetes in the sense that I can get a more granular look
at like what my Kubernetes cluster is doing? Maybe I have a hundred nodes running, but I've got all
these different services on it. Can I get visibility into that?

[00:18:48] YP: Yeah, so we have a Kubernetes integration provider. I would say like data, so it support
some of the resources. I'm not sure like what the granularity of the visibility yet. You can plug it in.
Something that actually people ask is to connect the Kubernetes provider with the, for example, with
the GKE. So, I'll throw you [inaudible 00:19:12] like the information from GCP and configuration, while
the GKE is to go ahead and use the Kubernetes provider for the Kubernetes clusters on your cloud
provider, right? Whether a GKE or AKS to get even more like granular data.

[00:19:27] AD: Yeah, cool. One last thing just on the underlying tech, I feel like – I read a blog post
about you're looking at timescale and things like that. Do you have historical looks at the resources I
have? Or is it always sort of like a, “Hey, this is what I currently have, and it's going to get overwritten
every time when I do a fetch.”

[00:19:43] YP: Yes, this one was really tricky to get right as well, and we tried different things on what
will work. So, to have a historical view, you basically need to maintain like handwritten migrations for
every resource, which is quite impossible from development perspective. But then we talked a little bit
more with some of the users. And for them, they actually said that they don't necessarily need it all, like,
all in one schema at the same table to always create the time, but it's more like for reactive or
investigation purposes. Okay, I want to go back and look at what I had in like this date, like load it, and
look at what I have there.

So, some of the things that will probably look into this scenario as that they said, it's actually more of a
data warehouse and data lake. So, you want to actually just store it, where it's cheap, and then only
query when you need it. This is something that we will look into, in terms of supporting, actually, data
lakes, like Snowflake, BigQuery, and putting in there, and then you can also like both use other
databases, and also use it for historical reasons. But in the sense, you can also do it outside of
CloudQuery, just backup your [inaudible 00:21:00] periodically. But we want to give like more native
support, right where you can kind of operate to a data lake, and then, okay, it's sort of there. If
something happens, I have another point of information that I can go back and use if I need to
investigate something.

© 2022 Software Engineering Daily 8

SED 1479 Transcript

[00:21:17] AD: Yeah, cool. It could also be cool to have like some post fetch, roll up aggregation
queries, maybe just aggregate some of the data into, you're saying like, “Hey, on this date, I have these
many easy two instances in each account, just maintaining that.” A smaller number of rows to maintain
over time, then you could still get some historical stuff or things like that, if you wanted too.

[00:21:37] YP: Yeah, exactly. For one table, this is something you can do, like, you can maintain
migration for one, exactly one table, but not for hundreds of tables. So yeah, this will be one option as
well.

[00:21:47] AD: Yup, cool. That's interesting. I want to shift gears a little bit and go into your
background. So, you said, you've started a few different companies, this is your third one. Can you just
give us a little bit on how you got into entrepreneurship? Maybe some of the companies you had an
acquisition in there, some cool stuff?

[00:22:01] YP: So, I guess I could start from the start. I guess I always slashed into – it was my kind of
childhood dream starting company. I didn't know why. Maybe ran like a lot of stories about Mark
Zuckerberg that it was exactly like 2008. I finished like high school and yeah, I guess, like somewhere
there. So, then I joined the Israeli Cybersecurity Intelligence Unit and I've been there for four and a half
years. I was into like computers early on and a lot of the – iPhone having then, so I guess it's all
accumulated all together. So, it was kind of my passion real from the start. Also started like a few
projects like while in the army, kind of like Bootstrap things.

But then, after the army, I joined a cert, like cybersecurity startup in 2013. It was a small server, it was
called HyperWise and it was acquired by Checkpoint after eight months. There wasn't even like one
customer. And I said, well, like this was my first startup experience. And I said, well, that's easy. You just
start a company, you're reworking on eight months, you don't need to have any customers, and then
just check [inaudible 00:23:16] for a bunch of money. So, I didn't stay in Checkpoint. I had a retention.
But I said, like, “If that's that easy, there is no sense to for whatever.” It's money. So, basically, it was a
good experience, but from the sense, actually, it was pretty bad. It was learning from completely the
wrong example.

[00:23:36] AD: It taught you the wrong lesson.

© 2022 Software Engineering Daily 9

SED 1479 Transcript

[00:23:38] YP: Back then, I was sure, that's the way it is. I saw it with my own eyes, and then I thought
– the funny thing that I had like two good friends that were working in small startup at the same time,
and they had the same experience and just like that, there was just some like micro acquisition spree of
just very small companies and we all learn the wrong lessons. So, we raised some money for like
startup, initially, we didn't even know what we were doing, but was cybersecurity was hot back then. I
guess, it's also hot now. We got some money, we started like, after we got the seed round of like $2
million, we started talking to customers, investors, we understood that actually, our idea is not that
good. So, we pivoted pretty quickly [inaudible 00:24:25] security, like enterprise level security and
started building that for two years and then I realized, alright, no one is coming. No one is buying us. It
doesn't work that way. Actually, you have to build a product that people use.

So, actually, it was like what I thought before I wasn't the third startup. Okay, now I get it, but anyway,
we are not that great, a lot of product market fee. So anyway, like investors brought new CEO. I stayed
a bit like to help with attack, things like company – a solid place. And then I went, I said, “Okay, I want
to focus on dev first, PLG. I think, this is the future.” We got it completely wrong here, but looks like they
found like a new CEO was like sales lead growth and he landed there. The company is still alive today.
But it's always early, you never know. I think it's doing a bit of revenue, which is nice.

So, like a complete disaster. But then yeah, it was totally focused on PLG and for Pike3, about three,
four years, was focused on like bootstrap self-funded startups. And my last one was really, it was the CI
for fast testing. So, if you know like Google has cluster fuzz, it’s like their open source kind of fuzzing as
a service for a lot of open source project. I thought, okay, looks like the market is hot. I want to try it out.
I bootstrapped it like with something more user friendly. They have it like – it was kind of a Google
internal project. So, I wanted to build something more user-friendly. I built that and we had like, quite a
good market sharer, like in terms of open source project using. It was called [inaudible 00:26:10], like
50% we're – faster than 50% was Google, like, of the whole 50% of the project, that we're using
fuzzing, right? That’s all of them.

But then I realized that, after the first experience, that we raise money way too early, I was always very
cautious to raise money. Because after that, it's the way of no return. Okay, what happens if you realize
one week after we raise money that there is no like product market fit at all? Then your stock. Then you
have to like, okay, let's make something got – and you're like, “This inconvenient point.” Yeah, I was

© 2022 Software Engineering Daily 10

SED 1479 Transcript

very cautious with raising money before, I'm sure. I realized there is not a lot of like product. It's a bit of
too niche, not every project needs fuzzing. It's a bit of like C++ specific. If we use the market even
more, it’s a lot of our projects were really like C++ modular, it's a burning problem with memory
corruption vulnerabilities. So, I think people out there said that just not DOD, and C++ plus wants
anymore. But if it's like, the margin is getting smaller. Actually, luckily, GitLab said, “Okay, we want this,
it's good for us.” I said, “Okay, good. Just in time, I'll help you integrate it into blog forum.” Yeah, it was a
great experience. Also, in GitLab, like looking how they work in remote company and we are a remote
company. Now, I learned a lot of lessons there. After that, kind of like went into CloudQuery.

[00:27:46] AD: Did you stick around at GitLab, for a while? Or did you mostly just help integrate? And
then say, “Hey, I want to start my own thing again.”

[00:27:53] YP: Yeah, I helped integrate. But I was always on the – thinking about the next thing. I didn't
know when I will find the next one. It was because I wasn't pressured and I want to be sure also work
on the right thing. So, it kind of like grew faster than I expected. Some of my early experiment was the
open source. Once I saw it, it started getting like traction. I decided to leave and started like focusing on
that full time.

[00:28:21] AD: Cool. That's a good segue, because I want to talk about CloudQuery is a totally open
source project, but you've also taken seed funding. So, how do you sort of plan to balance that open
versus paid nature? Do you have any, I guess, like business role models in that category? Like certain
companies that you want to model after there? What are you thinking about?

[00:28:38] YP: Yeah, so I think I have a few and I think also, it's something like, it's still an unsolved
problem, and a lot of companies taking different approaches, depending on their specific use case. So,
I think, in some sense, like Terraform is a good role model. But again, I think we – yeah, eventually it
will be managed version. A lot of users ask us for manage versions, because infrastructure burden is
real and a lot of companies don't have any specific constrain. It's usually a no brainer, as long as you
give some competitive and reasonable pricing.

So, this will be our way into monetization to start working on a managed version of CloudQuery. But
before doing that, we need to have like big enough adoption, like, let's say, in the thousands of medium

© 2022 Software Engineering Daily 11

SED 1479 Transcript

to big organization using us on a daily basis, because let's say we release a managed version, and we
can take something 10% conversion rate just for – we don't have any special features, just the same
thing, just manage. So, 10% conversion is, I think, something reasonable. If you have thousands to
2,000 of users, it's starting to be – all big users started to be interesting in terms of revenue. Maybe if
you have even hundreds, which is not bad, 10% conversion rate, then you wasted a lot of time and
money on 10 very expensive users while you could focus on growing the community, maturing the
project more, and you can do both, usually, because focus is constraint, and also because money as
well, like constraint.

[00:30:22] AD: Yeah. There are a lot of open source companies trying to make some money. I think
some of them are going to have a tougher time. I think this one, like, you're saying, people will pay for
managed version of this, given that there's a database involved. Do you want some sort of UI, maybe
some access control, things like that? There's going to be a lot, I think, a lot of opportunity there to
make that work.

[00:30:40] YP: Yeah. I think there will be also like, potentially, and this is something that's just too early
to know, just because the things that I'll know, in a year, or things that I don't know now regarding what
features we would do, maybe in the managed version, or what features will make sense to build like an
extra, or how to do tiers. You have a first tier and then you have a second tier. I literally can’t – it will be
too hard to predict it. But yeah, eventually you will have to – even if you have like this conversion for
just a managed version, you will have to start thinking, how do you increase this conversion? Maybe
have you have tiers? What features you introduce to make it profitable? Again, it will depend on
financial, what is the team size that you need to maintain? So, you have all those metrics to make some
smart decisions.

[00:31:33] AD: Yup, absolutely. It'd be cool to see that go. I have a last section here that I want to talk
about, and I came up with some potential features or areas that CloudQuery could go in. I want you to
tell me like, no way, we're not going to do that, that doesn't make sense with CloudQuery, or like, this is
why that won't work, things like that. So, we'll just sort of riff on these and you can expand on them if
you want to.

© 2022 Software Engineering Daily 12

SED 1479 Transcript

Number one, to start off. So currently, CloudQuery supports SQL, you can do select statements, select
whatever, from my EC2 instances, whatever. What about inserts or updates? Will you ever create or
alter resources in CloudQuery? Is it always going to be read only?

[00:32:07] YP: Yeah, it's a great question. I think we kind of discussed it also internally quite a bit. For
now, for sure, we'll focus on read only, because we still have a lot of features and a lot of growth to do
with just what we have now, and a lot of incremental features, and this one is kind of also like, if you
want to – you really like taking the company in another direction, it will also mean a lot of more testing
and more development time. So, you want to be sure people really need it in a sense. And that's a good
question.

I'm partially sure. I found one use case, which is good, but I'm not sure again how popular it is. For
example, in terms of provisioning, people already use Terraform. So, I would say, it kind of feels you
don't want to replace that. But on things deleting, kind of deleting resources in the sense, for example,
there is a tool, even quite popular called AWS Nuke, which clears AWS environments. You actually give
the right configuration and kind of a DSL. If you look at the code, it’s also a bit similar to CloudQuery.

So, the next thing is okay, I can use SQL and the framework is the same and then we can just
implement the delete thing. But I think you will need – if we were going to make this leave, we'll need
some more insights into really how popular that is. Because it can bring a lot of like support, new bugs,
support burden and development burden. It's a good question. There is actually another company, I
think called like, iSQL, which is, I think, kind of trying to replace Terraform with exactly – insert into, I
think it's the UI now, how it's going. But it's an interesting approach. But I'm not sure. I don't know. It's a
good question.

[00:34:04] AD: Yeah, I think I agree with you. I'm a big infrastructure as code fan, and I just think like,
why would you want to have a drift from your Terraform? You've got the CloudQuery drift in there, and
it’s just going to add more drift. So, I agree, but it's interesting. The one thing I was wondering is policy
remediation stuff. If I will always want to say, on my s3 buckets, always enforced this, it'd be nice as a
security team to be able to do that. But you probably just got to go out and talk to the teams responsible
and say, “Hey, change your Terraform, so that we're always provisioning this property or whatever.”
Probably better ways to do that.

© 2022 Software Engineering Daily 13

SED 1479 Transcript

[00:34:34] YP: Yeah, exactly. Because then you also didn't get into these like loops. If you just
remediated it, and this is like what we heard from the infrastructure team, yah, they are worried about,
sometimes about auto remediation, because then it will just go into the loop. The only exclusion that I
heard about is, if it’s these one or two rules that are really bad, unless you want to repeat it right away,
but usually, if it's something that just you want to find exactly like the infrastructure code and fix it there.
So, it’s really important.

[00:35:07] AD: Cool. Second idea. Have you thought about merging this with metrics in some way? I'm
seeing – if I want to say, I have all these S3 buckets, or maybe all these SQS queues are whatever
across my infrastructure, find and show me the top 10 SQS queues by the number of messages
received in the last day or something like that. You probably have to push this out to like a foreign data
wrapper or something and query that outside of CloudQuery, but would you ever sort of mix that in?

[00:35:34] YP: Yeah, I think it's something that we will look into, and I think it's under – it comes under,
like, basically, the meta feature is connecting it with other external data. So, if it metrics, but also maybe
cost, maybe security, kind of the next one, the most requested one, which also can work also in ETL
approach, like metrics and like security issues. So, collect security issues from AWS, security hub, or
things like whatever. Get a dependent VOD, or like any other alerts, or Snyk, plug it in, and then you
can do smart things and prioritize. Usually, you have like tons of those alerts and then you can ask
questions, show me like the vulnerabilities that are just on in this VPC, which is important for me.

So, some of the metrics, yeah, metrics is another place to get information. Probably it's a more tricky
one, because it's not a classic ETL, because, as you said, maybe Postgres foreign data or wrapper,
because there is a lot of data there. So, yeah, it's a good question. If you want to store it on daily or just
query directly and have like Postgres data wrapper is actually good, but actually, a great way to just
solve it.

[00:36:52] AD: Cool. What about this third idea. So currently, CloudQuery is sort of like a pull-based
system. What about like a more event driven, push based system where if I create an EC2 resource,
maybe you guys hook in to my cloud trail and immediately ingest that in. I imagine that takes a lot from
the cloud providers to help you out there. But have looked into more event driven and push base
updates?

© 2022 Software Engineering Daily 14

SED 1479 Transcript

[00:37:15] YP: Yeah. So, it’s also on the need longer term, I think to investigate it and try out. But yeah,
reading cloud trail or event bridge. For example, in AWS, or in Google, it’s a lot other – I don’t
remember the name, but yeah, the alternative file trail. We're getting into that. And then basically,
updating on your on push basis. It's possible, but of course, there will be like, new challenges and new
development, new things, if you want to test, just for example, cloud trail also has like 30, sometimes 60
minutes delay. Sometimes it only has like partial information. So, you might want to – sometimes it will
be easy just to update in place. The state of this EC2 was changed from running to stopped. So, you
just go ahead and change it. But sometimes, you get only part of the information and then you might
need to actually do another call to the cloud providers. Okay, “Give me all the information now. I want to
update.” So, a lot of room for questions and how to do it in scalable ways, and so on.

[00:38:25] AD: Yeah, sure thing. Cool. Alright, last one, and maybe it already supports this, I didn't
poke around the hub too much. But what I like non-engineering resources. Maybe if I want to go to my
marketing email provider and look up email, or pulling email subscribers, or maybe like replying and
pulling employees, or just guests, or whatever. Do you support like things outside of cloud providers?
Or is it pretty focused on engineering stuff?

[00:38:49] YP: Yeah. So right now, we don't have those providers, just because we were super late –
you can do AWS and GCP and working with those use cases. But it was always on our mind to also
potentially support others. The use case there is usually different. It's like more dated team marketing
team, and, yes, it's a question because actually, the underlying tech and architecture is exactly that. It’s
just that our first use case was solid infrastructure. But yeah, we'll be looking into companies Airbyte, for
example, or Fivetran, that our focus there, on the long tail of small market providers, but maybe it's
something that we'll also look into, potentially.

[00:39:33] AD: Yup, cool. Well, that thanks for playing along with me there on some of those even if
those weren't the best feature ideas for you. I appreciate you walking through that.

[00:39:40] YP: Yes. It’s been fun, actually.

[00:39:43] AD: Cool. Yevgeny, thanks for coming on Software Engineering Daily. It's been a great
discussion. Where can people go to find out more about CloudQuery? About you? Where should they
be looking?

© 2022 Software Engineering Daily 15

SED 1479 Transcript

[00:39:51] YP: Yeah, so feel free to like to jump on our GitHub page. We also have a discord which is
fairly active, so you can go to cloudquery.io/discord on our website on the discord link and you can
reach out to me there on my Twitter or on my LinkedIn. You can find me anywhere basically, monitoring
all questions. I’m the support team, as well.

[00:40:14] AD: Perfect. Sounds great. Well, Yevgeny Pats, creator and founder of CloudQuery, thanks
for coming on Software Engineering Daily.

[00:40:21] YP: Awesome. Thanks Alex. Really appreciate hosting me and I really enjoyed it.

[00:40:25] AD: Sure thing.

[END]

© 2022 Software Engineering Daily 16

