
SED 1500 Transcript

EPISODE 1500

[INTRODUCTION]

[00:00:00] ANNOUNCER: This episode is hosted by Jocelyn Byrne Houle. Jocelyn is a product 
manager, founder and investor. Today, she is an operating partner at Capital One Ventures 
where she focuses on data, ML, FinTech and enterprise applications. In the past, she has held 
product and technology leadership roles for multiple startups and for big companies like Fannie 
Mae and Microsoft. Follow Jocelyn on LinkedIn or on Twitter under the handle @jocelynbyrne.

[00:00:31] JBH: Enabling authorization policies across disparate cloud native environments is 
complex, and can be a roadblock for software engineering teams. Open Policy Agent, or OPA is 
a declarative policy as code approach to authorization that reduces security and compliance 
problems for engineering teams. The way it works is by translating business context into 
declared policy statements. These policy statements are then compiled into code and deployed 
as agents that can be injected into any process such as an API gateway, Kubernetes 
Provisioning Service, or Continuous Delivery Automation Service.

Styra created OPA and contributed it to the Cloud Native Computing Foundation, where it is a 
graduated project with over 130 million downloads to date. It's used at large companies such as 
Netflix, Atlassian, and Pinterest. The Styra Declarative Authorization Service, DAS, is 
specifically designed for OPA and it includes the enterprise great ability to author policies, 
preview impacts of new policies, and document all the history of old policies, all managed in a 
single pane of glass.

Tim Hinrichs, CTO and Founder of Styra joins the show today to discuss how to make 
authorization policies easier to author, distribute and monitor. He will also share with us some of 
his thoughts about leading an open source software company.

One note of disclosure to be aware of, Styra is a portfolio company of Capital One Ventures. 
The strategic investment arm of Capital One. Views and questions expressed in this podcast 
and related material are my own, or those of my guests, and do not reflect the views of Capital 
One Ventures or its affiliates.

© 2022 Software Engineering Daily 1



SED 1500 Transcript

[INTERVIEW]

[00:02:19] JBH: Thanks for coming to the show, Tim. I wanted to get started with some 
terminology questions if we can start with that. Maybe you can speak a little bit about the 
difference between authorization and authentication, and then bonus follow up question. Why 
are the name so similarly? 

[00:02:35] TH: I wish I knew the answer to the second one, I don't know. Whoever –

[00:02:37] JBH: It seems like terrible marketing.

[00:02:41] TH: It's always confusing. Even people who like implemented this stuff, they 
sometimes flip and flop because the words are so similar.

Yeah, so authentication, I always describe this as how do I prove to a computer system that I 
am who I say I am. And usually that solved with like a login and a password, maybe a 
thumbprint, face scan, MFA if you’re using your phone. So really, at the end of the day 
authentication is about who am I? Authorization is sort of the next phase of controls that you 
have around, let's say how people interact with software, which is, I go in, I've already 
authenticated, let's say it's my banking application. I go in to that banking application and I’ll 
click a button, view a report, try to withdraw money. Every one of those actions that I'm taking 
needs to be authorized. The software at the end of the day is going to check like, can Tim 
withdraw money from his wife's account or not? Right? That's an authorization problem.

So, the way I like to think about it at a systems level is, authentication, that might happen, sign 
in. That might happen once a day, once every 30 days. I think I sign into my Google accounts 
every 30 days. Authorization is happening on every button click, every page view, every list of 
results that I get, all of those results have to be authorized. So, wildly different in terms of the 
implementation, and how hard it is to implement in terms of how frequently the authorization 
problems get solved, compared to the authentication problem.

© 2022 Software Engineering Daily 2



SED 1500 Transcript

[00:04:10] JBH: That's really helpful. I like that description, right about every kind of touch that 
happens inside that application. How does policy fit into that world of authorization?

[00:04:19] TH: Yep. So, policy is an interesting word. Sometimes I'll call it policy. Sometimes 
we'll call it rules, regulations, best practices, all those things fall. They all sort of mean similar 
things in the sense that, let's go back to the banking application example. That piece of 
software, that banking app, has to have some logic inside of it that makes a decision, like, can 
Tim withdraw money from this account? Can he see the list of report for tax season? That logic 
is the policy that dictates exactly which actions I can take within that piece of software. So, that's 
the policy. We'll call those rules those regulations. That logic, that policy, I’ll use those all pretty 
much as synonyms, actually makes the decisions. Right now, there's software that's involved, 
that banking software has to like, ask, “Hey, does Tim have in fact, the permissions? Does the 
policy say he's authorized to push that button or view that report?” But the decision itself, we’ll 
often call that policy, the logic that encodes that decision will often call the policy.

[00:05:15] JBH: I really love that description, because I think sometimes the policy gives it such 
a mysterious software feeling, when I'm talking to leaders about it. And really, it is this sort of just 
short set of instructions, right? For you all, you have a couple of big use cases that you focus 
on. So, help us understand how authorization plays a special role for a particularly, I would say 
Kubernetes environment and the microservices environment. Those are two use cases. I'd love 
you to talk a little bit about the special problems of authorization in those worlds.

[00:05:48] TH: That's a great segue in the sense that the way I sort of set up authorization in 
that description was you've got a banking application. As I log in, and I poke around at that 
application, there are all kinds of authorization decisions that need to be made. I'll often refer to 
that as the application level of authorization that could correspond to microservices. By the way, 
authorization could take place within the application, even if it's a monolith. There's still one 
authorization problem needs to be solved. And more generally, then I like to think about it as 
application level authorization. So, we've already described that.

The second one as you describe it, like Kubernetes, I'll generalize that a little bit and talk about 
it as the infrastructure level of authorization. And here, the idea is like, “Look, at the end of the 
day, authorization is fundamentally about people or machines, taking action on software.” And 

© 2022 Software Engineering Daily 3



SED 1500 Transcript

the software has a side. Is this action authorized or is it not? Is it allowed? Is it permitted or is it 
not? That same idea applies not just to the banking application world, or any application world, 
but also to the infrastructure. Because at the end of the day, developers who are building and 
running those applications are also using software. They're using things like Kubernetes and 
AWS, and CI/CD pipelines, and they're interacting with software all the time.

So, at the infrastructure layer, the authorization problems that you need to solve are really 
focused on developers, taking action. Maybe they're upgrading their software. They're spinning 
up a new server. They're connecting a new network. They're attaching a new storage volume. 
And the question that needs to be solved then, buying that Kubernetes cluster, buy that public 
cloud, buy that CI/CD pipeline is, is this developer authorized to spin up that new server, that 
new network, or that new storage system? Or are they not? It's the same conceptual problem, 
authorization, it’s just applied to a different set of software, into a different, end user at the end 
of the day.

[00:07:33] JBH: Interesting. So, there's really – you're triggering me to think a little bit about the 
personas and the jobs to be done here, right? Which is developers provisioning their 
environments, IT leaders making sure that they're coordinating across multiple environments, 
and then at the application level, which I'm most familiar with, making it easier for those 
applications to run correctly, authorize the right people, that type of thing. So, users are getting 
an enhanced experience as well, that's more accurate. I think the interesting thing is the 
complexity of working – there are so many policies out there, and they're almost immediately out 
of date. Tell me a little bit about how OPA was intended to tackle this level of complexity. I'd love 
for you to talk a little bit about making the lives of developers easy, but also the kind of 
performance boosts you get by running close to the infrastructure.

[00:08:21] TH: Yeah, all good questions. We'll see if I can get them all. When we started Styra, 
the problem that we saw was kind of in part, I gave you like a two-level kind of an introduction to 
authorization policy, which is applications and infrastructure. It's true. But even within any one of 
those, you've got a multitude of different pieces of software. At the infrastructure level, we rattled 
off Kub and public cloud and CI/CD pipelines. But in reality, there are how many products at 
each of those levels? I mean, maybe there's just one Kub. But there are multiple public clouds. 
There are a large number of CI/CD pipelines.

© 2022 Software Engineering Daily 4



SED 1500 Transcript

At the application level, you've got all kinds of databases, all kinds of service meshes, all kinds 
of gateways. And when we started the company, what we saw was that all of those different 
products and projects have a completely unique way of solving authorization, right? As a user, if 
I've got 50 different pieces of software, I need to learn 50 different ways of solving, of like putting 
in place my own authorization policies, even though the policy, the logic itself may be the same 
for all of them, the details about how I enforce that, how I implement it, how I actually put those 
controls in place for each of my 50 different pieces of software is completely different. It's a 
different UI. It's a different API. It's even a different model.

So, when we created OPA, it was really designed to solve this problem. To provide a unified way 
of solving policy and authorization across what we always say, is a cloud native ecosystem. But 
really, there's nothing all that unique about the cloud native ecosystem. So, it's really about all 
software at the end of the day. And in order to do that, there are some key things that you'll see 
embodied in this OPA project that are common across all of these different pieces of software. 
So, what OPA provides, really, is a – what I'd like to describe as a file format. There's a 
dedicated file format now that allows you as a user to go in and say, “Here's the logic. Here's the 
policy that makes authorization decisions.” Now, that logic is domain agnostic. It's not tailored 
for CI/CD pipelines or applications or Kubernetes. It's a general-purpose policy language, 
meaning you can apply it to really any of these different, 50 different pieces of software. So, 
that's like the first thing. It's a file format that says, “Here's how you express policy.” And you can 
take those as files. Now, I check them into CI/CD do or where want them.

The second big piece was really a policy engine, a piece of software that you could feed those 
policy files, and then you could ask, “Hey, is Tim authorized to withdraw money from account 1, 
2, 3, 4, 5?” And then that policy engine would give you an answer, yes, no, or maybe there's a 
maybe. Or maybe, yes, he can, but he has to sign this document. Those are all fine decisions. 
So that's really the second piece. And obviously, it goes hand in hand with the first. The file 
format doesn't really do you any good if you don't have decent software that knows and 
understands how to use it. I sort of think of those going hand in hand like a high level with image 
files, and our browsers can render them right. Like movie formats and how you just open your 
browser and they start playing the movie, right? It's great.

© 2022 Software Engineering Daily 5



SED 1500 Transcript

[00:11:14] JBH: It has one job. It has this one job.

[00:11:16] TH: Does one thing well and then that is policy and authorization, for sure.

[00:11:19] JBH: So, individuals have an easier way to author policy. And then the nice thing is, 
all these applications simply come out to a policy engine and say, “Hey, run this piece of code”, 
and you get back an answer if, basically, yes, or no, Tim is allowed, he's not allowed. So, that 
simplification, then takes all that weight out of the application into this authorization layer. Do I 
understand that correctly? So, one of the things it kind of blows my mind is just talk a little bit – I 
think, I don't know if I asked you this question. Maybe I did before. How does this work today? 
I'm a software developer in a large enterprise. I've got a bunch of applications I'm building. Well, 
how do I do this today without OPA?

[00:12:01] TH: Yeah. Well, there are a couple of answers to that and I'll call into that. One of 
which is, like, if I'm an application developer today, and I'm not using OPA, typically what I'll do 
is I'll write a bunch of Java code here, Ruby code there, Go code over in another service, some 
React code on the front end. And altogether, those somehow implement your authorization 
policy. If some auditor comes along and says, “Hey, what is the policy that's implemented?” Or 
some product owner, some product manager, the answer is, “Well, go look at that bit of React 
and that bit of Go and that bit of Ruby and that bit of Java and kind of figure it out.” So, that’s 
kind of the norm, right?

[00:12:38] JBH: When we first talked about this, it kind of blew my mind, because it's one of 
those things where you just accept it. All these years, I've been working in enterprise software, 
and I have accepted this idea that all these handshakes require another run of authorization 
with some other set of rules or language. And then if you have to redeploy, you can break that 
pretty easily, or have to redo it.

[00:13:00] TH: Yeah. Or heaven forbid you release a new feature now, like what's going to 
happen? Who knows?

[00:13:06] JBH: Yeah, that's the sort of accepted. I mean, for many years, that's just how it 
worked. So, that was just really helped me understand the power of OPA and what a great like 

© 2022 Software Engineering Daily 6



SED 1500 Transcript

simple, elegant approach I thought it was. And then the next question is really helped me 
understand in a couple of sentences, what is the difference between OPA and Styra’s DAS?

[00:13:26] TH: Yup. Right. So Styra DAS is Styra’s commercial product. I'll give you two 
answers. One of which is sort of architectural, and the idea here is that really OPA was 
designed, and I guess I didn't answer the question earlier. So, I'll do it. OPA is really designed 
because of how frequent authorization decisions need to be made, right? Every button, click 
every page view, you need to run OPA as close to the software as you possibly can, physically 
speaking. If your service is running on a public cloud, you definitely want OPA running in that 
same public cloud. But not even just the same public cloud. You want to run in the same region, 
in the same AZ or availability zone.

In fact, ideally, you'd want it running in the same server, maybe even on the same process, as 
the software that's actually requesting decisions, right? Because what happens if suddenly, like, 
imagine a reverse, imagine you're running OPA on the other side of the world from your 
application, or your infrastructure doesn't really matter. And now suddenly, there's a temporary 
network disconnect between the two. Your software is trying to ask OPA for an authorization 
decision, and suddenly it can't. It can't get a decision. So, what does your software do? I don't 
know. Is it going to just let it go? Probably not. It's probably be failing close, which means your 
software, if it can't talk to OPA, becomes a brick. Now, that's true of any authorization system. 
And nothing to do with OPA.

So architecturally, what you want is to sort of satisfy two different needs, one of which is you 
want to run open this case as close to your software as you possibly can, so that it's got high 
availability on low latency. But you also don't want to embed it into that software, right? You 
don't want to have that policy littered throughout 57,000 different places in your source code. 
And so, that's why OPA was designed to run more so as an agent. So, run it as a sidecar. You 
can even run it as a library. Run it as physically close as you possibly can to that software.

All right, so what that means from an architectural point of view is that you don't have one 
instance of OPA or 5 or 10, you could have hundreds or thousands of instances of OPA that are 
all running physically very close to your applications and your infrastructure. So, what that begs 
the question of is like, “Well, how do you manage? How do you control?” At the end of the day, 

© 2022 Software Engineering Daily 7



SED 1500 Transcript

what you're trying to accomplish is say, “Well, I would love to have like one conceptual way of 
writing policy and controlling policy and authorization across different applications and 
infrastructure. So, you need some sort of control plane, some sort of logically centralized way of 
managing all those OPAs, very common pattern in the cloud native space, and that's what 
Styra’s Declarative Authorization Service, or Styra DAS delivers. It is that commercial control 
plane. It is synergistic with OPA itself.

[00:16:05] JBH: So, what you get from that is running all of these multiple OPAs close to the 
application, the server, whatever the case may be, and that cuts down on all the kind of, call it 
hops, right? Network hops, so that you actually get better performance. Is that correct?

[00:16:21] TH: Yeah, it's that, you'd say a Goldilocks zone, right? It's like, if it's too close to your 
software, then it's intermingled, and you can't separate out what is the authorization policy. What 
is that logic from the actual app or the infrastructure itself. If it's too far away, then you end up 
with this poor availability, poor latency, and that turns your software into a brick. So, OPA is 
intended to be that middle ground where it's architected to be flexible enough where you can, 
like I said, you can run as a library, you can run as a sidecar, you can run it on the same server 
as a Daemon. You can go ahead and run as a micro service that’s separate from your 
applications or your Kubernetes API servers. But the point is that –

[00:17:00] JBH: But that sounds better in theory, probably than reality.

[00:17:04] TH: I mean, sometimes it's the right thing. So, when we chat with folks about what 
are your policy needs? I always start with like, what's the actual logic that you care about? 
Where are you hoping to enforce this logic? And then what is the data that your policy needs in 
order to actually come to conclusions? So, here's a good example, like, go back to the banking 
app. Suppose that you've got a list of whatever records or accounts, and the authorization logic 
that you want to put in place as a developer, as a product manager, would be to say, “The only 
people who can delete a resource or an account or report is the owner of that account or the 
owner of that report.” Well, who's the owner, right? For every account, for every report in that 
entire application, you've got to have a bunch of data that says, “This report is owned by Tim or 
by Jocelyn.”

© 2022 Software Engineering Daily 8



SED 1500 Transcript

So, that data is sizable. It is something that OPA needs to understand in some way, shape, or 
form in order to make a good authorization decision. So, this boils down to like the data gravity 
problem. So, if you were to try to say, “Hey, I've got a terabyte of data that open these in order to 
make decisions”, I'm going to go ahead and copy that terabyte of data and to sidecars next to 
each one of my thousand application microservices, like forget about it. You're not going to do 
that. So, there are cases, data gravity being a good one, where you actually do want to run OPA 
as a microservice, and it's not the end of the world, you just have to make sure it's horizontally 
scalable, and then it's running in the same AZs. It's physically close, like I said, to that app as 
you can.

[00:18:32] JBH: Takes a little bit more tending. That makes sense. Thank you. One of the 
questions, so you've got now, hundreds of thousands of these OPAs running in an enterprise 
environment. The complexity really kind of explodes out in terms of authoring and managing all 
of these policies in concert. So, you've got your architectural benefits of DAS. Great, got it. 
Check. But then, I think about these IT leaders and business and product leaders, and there are 
tens of thousands of policies in every organization, some competing with each other. So, there's 
kind of like, you said, Goldilocks, but I feel like it's a three wishes scenario. You're like, I wish I 
had all of this in one control plane. And they're like, “Oh, it's a bit of a gotcha.” Because you see 
all your policies.

[00:19:16] TH: Yeah, for sure. This is another good dimension. When I'll talk about Styra DAS, I 
usually say, “It's control plane, for sure.” You need that architecturally. That's a good way of first 
cut, understanding OPA versus what we do at Styra personally. But then the second level is like, 
I think about policy lifecycle management. How do you author test, deploy, monitor, record 
decisions within an enterprise? Especially when you've got multiple teams running into different 
applications, different infrastructure. How do you make sense of that? How do you put 
governance controls on that? That's the other second piece that the Styra DAS delivers is, it'll 
do things like say, “Hey, let's say that you're an enterprise and maybe you want to have – you 
end up with hundreds of Kubernetes clusters.” Okay. Great. Probably what that means is that 
you've got different maybe lines of business or different teams responsible for some subset of 
those clusters, right? Each cluster has its own owner. That team you want to empower to say, 
“Hey, you put the right policies, the right rules, right regulations in place for your cluster, 
because you know it. You know what the applications are that are running on it. You know what 

© 2022 Software Engineering Daily 9



SED 1500 Transcript

your risk tolerances are. You know how sophisticated your end developers are, and how 
comfortable they are with Kubernetes.”

So, we see that happen, like, you've got many clusters, and the organization as a whole, wants 
to delegate, the administration of all those clusters, to the extent that it can. But it still wants 
governance in place across all those clusters. So, that’s obviously, one of the features that we 
provide in Styra DAS. The ability to write sort of global policies that apply to many, many, many 
Kubernetes clusters, or service mesh fleets or whatever the enforcement point happens to be.

[00:20:53] JBH: DAS has special features for that IT manager or business leader who's looking 
across multiple policies, and it has special features for policy authors. Can you talk a little bit 
about that?

[00:21:05] TH: Yeah, that's another good one. Another good dimension there. So, when I think 
about policy authoring, I know that – one of the nice things about OPA is that it gives you this 
text-based format for describing logic, for describing authorization policy. Some folks love it. 
They're just like give me VI or Emacs, and I'll crack it open and I'll go to town and write policy 
that way. Other people will say, “Hey, you know what, I don't want to do that. I want to go and 
just have you give me a bunch of prebuilt rules. I don't want to write the actual rules at all. I want 
to go to a GUI and pick one out of a list and put it in place.” Some people are sort of in between. 
They're like, “Well, I don't really want to open a text editor. But I want a GUI to help me guide me 
through writing policy. But maybe I've got sophisticated policies and I want to write or whatever.”

Other people will say, “Hey, you know what, I think about this from a compliance point of view. I 
care about Mitre, or I care about PCI. So, what I want is a prebuilt wizard that will just walk me 
through putting a bunch of rules in place that all correspond to things that I know about in those 
regulations.”

[00:22:06] JBH: So like guardrails, just like building in the guardrails ahead of time, so your 
users can't go off track?

[00:22:12] TH: Right. Yeah. So, the takeaway I always think about is like different personas 
want to author policy in different ways. They want different amounts of help. So, DAS was 

© 2022 Software Engineering Daily 10



SED 1500 Transcript

designed to help with all of those that we talked about. You can write it in a text editor. We've got 
a GUI where you can write text-based policy like an IDE style. We've got a graphical policy 
builder that you can use, it helps you a little bit more than the IDE. We've got pre-built rules for 
at least the infrastructure cases where that makes a lot of sense. And then we've got policy 
packs that cobble together a bunch of rules that I'll help you with PCI or Mitre, or whatever.

So, that's one of the key things that I see in the enterprise, which is that you've got policies 
when these things that it's a multi stakeholder endeavor, right? It's about security, and 
developers and product managers, and compliance all coming together and saying, “Here are 
the policies that we need to put in place.” And I think that's part of why, especially if you think 
just like littering your code with little bits of policy here and there. It’s so hard, it's because it's 
not just a developer concern, it's a concern of product and security, and compliance, and so on, 
and so forth. So, by decoupling those and providing different interfaces for those different 
personas to interact with that policy in ways that they're most comfortable, does certainly seem 
to help.

[00:23:25] JBH: I really resonate with what you're saying in terms of policy being a team sport. I 
think in this new cloud world, where you've really democratized a lot of management of not only 
your infrastructure, like in the Kubernetes case, but you've democratized access to data, 
different types of applications, business specific activities. It's an interesting problem of having 
so many competing policies or policies that are simply changing so fast. The ability – I think 
that's an interesting kind of part of the velocity of business that's been enabled through cloud, 
has also kind of amped up this problem statement of do we have the right policy running for 
today? Also, I think the interesting thing about OPA, too, is to helping develop and create 
velocity around redeploying new features, right? Because often policy changes will kind of come 
hand in hand with a new feature.

One of the things I was curious about is, all these features, which seem to resonate as you're 
working with large customers? I'm really interested in that large, complex customers. Which 
ones of these features are really the ones that are blowing people's minds or the ones they 
adopt the most?

© 2022 Software Engineering Daily 11



SED 1500 Transcript

[00:24:25] TH: Yeah, let me say one thing. And then if I forget, I’ll answer the question directly. I 
think you hit on something really powerful there, which is there are two kinds of velocity that we 
think about. One of which is developer velocity, in the sense that especially in the infrastructure 
case, those rules that people put in place with OPA, with Styra DAS, it may seem odd to say 
this, but it actually speeds up development. I'll say it again, you put rules in place, to stop things 
from happening, and it speeds up development. 

[00:24:55] JBH: That's right.

[00:24:56] TH: I think it's funny to say it that way, but that same thing happens with traffic signs. 
In the end of the day, overall, things are working better because there are rules and regulations 
are governed how like who goes first, and you're not hemming and hawing. I know, when the 
green light is green, I get to go. And when I get to stop, then I got to stop. But like in the 
developer world, I think the reason that it goes faster is because developers want to know 
immediately, if something that they are trying to do is not going to work.

[00:25:20] JBH: Just immediately going to break. It’s just immediately going to break.

[00:25:22] TH: Yeah, it's immediately going to break, and so the way I think about the 
development processes, the sooner you can give developers feedback about like, “No, you can't 
deploy this ingress this way, or you can't run a random binary from the internet on our 
production cluster. The sooner they find that out, the better, because then they don't go down a 
bad path for hours, days, weeks. They figure it out earlier. Moreover, I think one of the cool 
things is that when you have an automated process in place, it's saying, no, like, not only this is 
– do you obligate the need for a person to check that. But also, as a developer, I don't care if a 
machine tells me no a thousand times. I am not going to bat an eye. I'm just going to keep 
trying. So, it's a good way to learn very quickly and there's not, there's no issues about, “Oh, I 
got a bad code review, or whatever.”

[00:26:10] JBH: It’s like lower friction. It’s lower friction and less for developers to do. I have to 
say, every time I see a company that's like its policy as code. And there's a lot of companies 
kind of using that terminology, my heart always sinks a little bit. Because often, it's sort of like, 
we're just going to ask the developers to do more things. We're going to add more to the 

© 2022 Software Engineering Daily 12



SED 1500 Transcript

checklist, right? Whatever it's like, as code is the process that I hear, I'm always like, “Oh, are 
we just adding more things? More code reviews? More places?” So, in this case, I really do 
think it helps developers get moving faster, and get over some of these friction points that really 
should have been automated a long time ago. I love that you're talking about that and double 
clicking on that, because there's just a lot of companies that are wanting to help developers, and 
this really does help them in a very obvious pain area, and it helps them in a really efficient, as 
you said, depersonalized way, which is super handy.

[00:27:03] TH: It just popped into my head, the other – just going back to like this whole notion 
of policies code and pulling those policies. The reason OPA wasn't even in first place is having 
this domain agnostic policy, language and file format means that if you've got a policy enforced 
at the Kubernetes, admission control level, that's great. Why? Because developers can't deploy 
code they shouldn't. You can take that same policy. Pull it out of Kub now, because it's written in 
OPA’s language, and enforce it in a CI pipeline. Why is that helpful? Because now, if as a 
developer, I'm not sending code straight into my Kubernetes cluster, I'm sending it into a CI 
pipeline first, then it gets deployed, then I can get those checks even earlier, before they get 
rejected at the Kubernetes cluster. I can take that same policy file and run it on my laptop, so 
that I don't even have to bother opening a PR in my CI pipeline. Or even worse, waiting until the 
Kubernetes cluster gets a hold of it. Now, I can basically run these policy checks as if they're 
like unit tests. I can, in almost real time, I can pull this all the way. We haven't done this yet. But 
we can pull this all the way into the editor. So, that as you're typing, the Kubernetes manifest or 
whatever, you're getting real time feedback about, “Oh, you've just put something in there that 
we're not going to let you deploy.”

[00:28:15] JBH: You're like, “You’re on track. You're on track to succeed. You're falling off track.” 
Yeah, you get real time. And this is Rego, you're talking about?

[00:28:23] TH: Yeah. Rego, the name of the policy language. Yeah, so you've got that file 
format. It's just file format. I can send it to you in an email or you can download it out of a Git 
repo. You can take that file format and run it in an OPA anywhere you like. So, the idea is shift 
left, that enforcement as far as you can into that developer workflow so that they find out about 
things that are not going to work as early as they possibly can.

© 2022 Software Engineering Daily 13



SED 1500 Transcript

[00:28:47] JBH: I think that's amazing. And Rego, I was curious, when you sort of started the 
idea around OPA, was Rego always going to be hand in hand with that or is that something you 
evolved?

[00:28:55] TH: I'll tell you a little story about rego. But the idea behind OPA was really, the way I 
described it was, we were going to solve that – we're going to provide a unified solution to policy 
and authorization. That was the mandate. That was the idea. We knew then that we needed a 
policy language that was not coupled to any of those existing – it couldn't be a Kubernetes 
thing. It couldn't be a public cloud thing. It had to be somewhat agnostic of all of those. So, 
those two always went hand in hand. Like the notion of OPA, the only way in my opinion, to 
solve the problem of unified authorization is to provide that file format, which encodes that 
language that you use to express those policies.

[00:29:36] JBH: And the reason is because it has to be agnostic as to be some kind of lingua 
franca for policies specifically. That's helpful. That's interesting. And then do you have any 
advice for those who are like – if they're getting started writing policies with Rego, is there 
something different about a declarative language like this, from other languages you might be 
used to?

[00:29:52] TH: Yeah, what are the things about declarative languages. I mean, maybe one of 
the main things is that you don't get side effects. So, you don't get to increment counters. It's not 
a thing you could do. And that seems very basic, but also, it was designed to make the 
language something that you kind of look at. And ideally, maybe if you enhance some of the 
punctuation, that you could like read it off in English. This thing is allowed if the user is Tim, and 
the action is a read, and the resource name is 1, 2, 3, or whatever it is.

So, that was kind of how it's designed that you declare those rules that make up the policy, that 
make decisions around what you're authorized to do. What you don't then have to do is worry 
about all the long list of performance things that you would typically need to worry about, and 
then an imperative language. I mean, I think a lot of imperative languages are complicated by 
the fact that you can't just write down the logic you care about, right? You write down the logic 
you care about, that takes an hour, and then you spend 10 hours, making it run quickly. I don't 
know what the numbers are.

© 2022 Software Engineering Daily 14



SED 1500 Transcript

[00:30:51] JBH: I don't know. That's interesting. Yeah, that's right.

[00:30:54] TH: So, one of the premises behind it, right, we would probably argue any declared 
language, but certainly Rego, was let you make the syntax mirror as close as we reasonably 
can, English level policies that you might find in legislation. So, that was like priority one, and 
priority two was like, do whatever we can to automatically deal with the performance 
optimizations that otherwise, a programmer would have to go off and do.

[00:31:16] JBH: I think that's so thoughtful. That's like such a thoughtful component, that 
performance forward, taking that off the table really allows this very simple, clear way of writing 
human readable, declared policies. I just think it's a very interesting component of the DAS and 
OPA. One of the things I'd love to ask you a little bit about, if you're willing to share is it's a really 
powerful – DAS is so powerful. You clearly have spent a lot of time thinking about that large, 
complex enterprise from an architectural perspective, from a user perspective. What's next in 
the product roadmap? Where would you like to take this product next? To the extent you’re 
thinking about that now, you may just be thinking about tomorrow and all your task for tomorrow. 
But as you're thinking about that, where's enterprise going, especially these cloud native 
complex organizations?

[00:32:00] TH: Yeah, well, I think there are a few things to mention here. One of which is we 
have the –I think we do what a lot of companies will do is at some level we talk to, we've got a 
bunch of users, or customers, right? They're using thing all the time. They're telling us where 
they think things need to go. And so, we're doing that. But what we also have is the open source 
community. We're watching what they're doing. We’re chatting with them, helping them along. 
And as we see trends show up there, then we go ahead and think, “Hey, there was recently a 
CloudFormation, or AWS release to hook into CloudFormation.” And then we did in the OPA 
world, we put together some work that says, “Here's how you hook OPA in to CloudFormation, 
so that you can put policy guardrails in place for AWS, which is great.”

Very similar to how we do with HashiCorp, right? We just recently talked about and released this 
work in Styra DAS around guardrails for TerraForm. We had that for a while, but just recently, 
HashiCorp have opened up TerraForm Cloud, to have that same kind of hook so that we can go 

© 2022 Software Engineering Daily 15



SED 1500 Transcript

ahead in there. So, sometimes what we do is we just watch what other vendors are doing. And 
we say, “Hey, you know what, that's a powerful place for us to integrate OPA.” And then we can 
go ahead and provide that and a bunch of the stuff around that and bake it into DAS. So, those 
are two of the things that we're excited by.

But then there's also, we just announced this Styra Run product where for the first time, we're 
actually running OPA for folks in the cloud. So that's pretty exciting. Up to now, we've had that 
very clear separation between OPA is the open source, you run it at the edge, and Styra DAS 
has been that control plane. And now the Styra Run product is really designed to be able, we’ll 
run OPA for you in the cloud as a managed service. And then it makes, the idea being it's easy 
to offload your application authorization decisions to Styra Run.

[00:33:44] JBH: Any technical surprises as you've moved your service into a fully cloud based 
services?

[00:33:49] TH: Well, Styra DAS has always been fully cloud, run in the cloud. The interesting bit 
about Styra Run has just been the things that we always knew, right? That you need geo 
replication, you need really low latency, you need highly optimized memory, and tenant and 
sharing. So, I don't think we've run into anything that was surprising as we've been working 
through this, but –

[00:34:12] JBH: Just the regular slog of things that known items. The regular known problems.

[00:34:18] TH: Right. This is something that obviously, we've been talking with people about for 
a long time for years. So, I think, once we decided to do it, and we felt like we had a pretty good 
handle on what was going to be required.

[00:34:29] JBH: I want to double click on two ideas here that you just checked on. One, is I had 
a question about integration, and one is about leverage and your open source routes. So, let's 
talk a little bit about integration patterns. Because you're right, the part I see the most is the 
policy authoring and the dependency on the input data, which is all like immaculate and 
perfectly organized, which never is, right? So, just help me understand, if a big customer signs 

© 2022 Software Engineering Daily 16



SED 1500 Transcript

up, like how do you start these integrations and implementations, and what are some of the 
keys of success for an implementation for you?

[00:35:03] TH: Frist, comments. So overall, like one of the powerful things about this cloud 
native ecosystem is it just architects really, we're seeing this move toward authorization being 
basically being a hook that's available in cloud native software. So, you can plug things in like 
OPA to it, right? Kubernetes does this. They've got a great pipeline for authentication and 
authorization for admission control. So, when you're running OPA, you're hooking OPA into that 
API server. There's no way to circumvent it. We're not running a proxy or something in front. You 
don't need to. And I think that architecturally that's becoming a pattern that we see within the 
cloud native ecosystem. Service meshes do this. We've just gone through Hashi and AWS 
doing this. So, we're starting to see databases do this, too. So, there's more and more of these 
software components. They're just making authorization a pluggable feature. And that's 
obviously powerful for OPA and Styra.

[00:35:52] JBH: Yeah, it makes life a lot easier. That's great.

[00:35:54] TH: Yeah. And so, when we're working with enterprises, often what we'll say, we'll tell 
the story that we've been telling here today, which is, “Hey, there's authorization everywhere, 
within the applications, within the infrastructure. It's just everywhere and we help you with all of 
it.” And people love that, right? Because why wouldn't you? But at the end of the day, to make 
progress, what we always say and shot this from the rooftops, pick a pain point, pick that 
application where you already know that you're in pain, and you need to factor the authorization 
logic out of it, or pick that infrastructure, technology, whether it's Kubernetes, or TerraForm, or 
whatever, where you know you need to put guardrails in place. Go find that team that owns 
Kubernetes, that owns that application and understand directly. What are your pain points? 
Does decoupling authorization from your application or putting guardrails in place for your 
infrastructure? Are those things that will help you address those pain points? And if so, then roll 
it out.

So, you get one win that way, it doesn't matter what the area is, and then you've learned a lot 
about how to use OPA. You've learned a lot about how to use Styra DAS. You've got a great 
story to tell and explain, like, here's how we got this to work in my application one, or in my 

© 2022 Software Engineering Daily 17



SED 1500 Transcript

Kubernetes for the organization. And then you go and you say, “Okay, what's the next one on 
the list?” And then you repeat. That's the way I think to go from. So, it’s kind of like a bottom up 
kind of approach to getting authorization controls in place everywhere. If you're solving concrete 
pain points, then nobody's going to stop you. If you're trying instead to say, “Hey, as an 
organization, everyone's going to do it this way”, that's going to be a very, very long road.

[00:37:32] JBH: I love that as a product manager and a technology person. That kind of really 
discreet use case as the starting point. For me, I call it the race car strategy, you just pick one 
car to beat, and then you pick the next car to beat until you're at the front of the pack. Because I 
do think like these efforts to create some kind of master set of rules, always just kind of fall 
down under their own weight. 

That's actually a great kind of segue into talking a little bit about the business strategy behind 
Styra DAS. I did have say that little bit of a tease there. You said there was a good story about 
when you were thinking about starting this effort and building OPA, and you were thinking about 
Rego. Yeah. So, tell me a little bit about that sort of origin story. You're there. You've got your 
pizza box. You've got your partners. Right?

[00:38:20] TH: Yeah. All right, I'll do the origin story. The thing about Rego is a cute little 
technical anecdote. So, if we have time, remind me and I'll do that one.

[00:38:28] JBH: I want to hear that right now. That's what this whole show is about, technical 
anecdotes.

[00:38:34] TH: I always start with the origin, and then we go. So, before we started company, 
we were at VMware. We had ended up at VMware through the Nicira acquisition. And it's funny 
in the early days in Nicira, it was really a policy networking company. That was the idea. It was 
like, let's write some policies that govern where packets can flow and where they can't. And then 
from there, what came out of it was virtual networking, just because it was easier for people to 
consume and to write. And then, obviously, it went off to software defined networking.

So, while we're at VMware, some of the clients we're talking to knew that we were some policy 
folks. And they were like, “Hey, by the way, we're a bank, or we're a tech firm, and we've built 

© 2022 Software Engineering Daily 18



SED 1500 Transcript

these policies, systems to manage all our policies, and why are we doing this? We don't want to 
do this. Hey, can you guys like go off and do something.” We'll give it a whirl. We don't want to 
be in the business of building and maintaining a policy system. That's not what we should be 
doing.

So, we spent a couple of years at that point, building out a project inside of OpenStack, at the 
time. This was nine years ago at this point. So, it was well back then. We went into OpenStack 
and we built it. It's called OpenStack Congress, and we spent some time on that. And then what 
we decided was, look, this policy problem is really bigger than OpenStack. It's bigger than 
VMware. Every company on the planet is going to have this problem, especially taking into 
account the fact that all these companies are embracing this cloud based, these cloud native 
approaches to building software. And when you do that, you've got way more software 
components, right? Like you're talking about going from monoliths to microservices. You're 
talking about far more dynamic environments. You've got Kubernetes spinning up and down 
instances of your microservices all the time. You've got incredible reach in terms of where you're 
deploying all of these software application instances. 

[00:40:20] JBH: So, you're at VMware, you're building this, you've got background, and the 
whole policy world that you've been thinking about, and then from a network perspective, for a 
long time. When you thought about open sourcing this, tell me a little bit about how that strategy 
came into play?

[00:40:33] TH: That’s a good question. For me, there was never a doubt that we had to open 
source the policy language that became OPA, right? For the simple reason that policy is so 
crucial to so many different parts of the business. Like I'm imagining going – imagine you're a 
10-person startup, and you go to some – the largest bank on the planet and you're like, “Hey, 
you want to write all your policies in this proprietary language that only we have control over? Is 
that going to work?” No. I just couldn't bring myself to believe that would ever work.
 
[00:41:04] JBH: You know what I'm really interested in knowing is, so you're like, I love it, right? 
I'm all about open sourcing. You're going to open source this. Of course, it makes perfect sense 
for your business model. Did you know kind of the shape of DAS at the same time? Because it's 
such a full featured enterprise offering. A lot of times open source, I see like a great idea, and 

© 2022 Software Engineering Daily 19



SED 1500 Transcript

then they're kind of struggling for that enterprise product layer. This seems much more heavily 
weighted towards that enterprise product. Was that part of the plan from the beginning?

[00:41:30] TH: Yeah, I'll just finish the thought of it. I did half of it, which was we couldn't 
imagine the company succeeding if we hadn't open sourced OPA. But the other side of that 
was, that if we open sourced OPA, we'd have everybody in the world with expertise in all kinds 
of different domains contributing to the language, contributing to the engine. Bringing use cases 
that we wouldn't have envisioned or thought of. I saw it both ways is that, like, that is a 
necessary component of not only necessary, but it's wildly beneficial to have this thing owned by 
the world, owned by the community. 

Okay, yeah, was DAS in there from the beginning? The answer is yes, conceptually. So, the 
other part of the backstory here is Teemu, one of the founders, was the Chief Architect at Nicira. 
So, Nicira was this distributed network, software defined networking. They had the same kind of 
problem that we did, which was they needed this piece to run at the edge, because turns out, 
networking needs high availability, high performance as well. But they also needed that 
centralized control. So, we always knew coming into the authorization space, that that was the 
architecture overall that we needed. We needed this data plane, as the networking folks like to 
call it, that runs at the edge, that's OPA, and it became OPA. And then we needed that logically 
centralized way of controlling all those OPAs. So, that was, in part why, Teemu and I got 
together was that we knew that that was the right technical architecture, to solve authorization 
from the very beginning.

[00:42:59] JBH: That's really helpful because it really is a mature offering from an enterprise 
perspective. And of course, its integration. Its handshakes with OPA are so clean. So, that 
makes perfect sense and I hope other young founders who are thinking about an open source 
endeavor, I think it's one of the things that's interesting about what you're saying is you were 
thinking about the enterprise from the beginning, and that doesn't make you any less virtuous as 
an open source leader to have that in mind, right, ahead of time. So, one of the questions I had 
for you as a leader in open source is how should investors, how should buyers, when they're 
evaluating the health – a lot of times I get asked, well, how do I know if it's a good open source 
project underneath that enterprise offering? So, a lot of commentaries out there, but I'd love to 

© 2022 Software Engineering Daily 20



SED 1500 Transcript

get your opinion on what do you look for when you're like, “Oh, let me check out and see if this 
is a solid project.” What are the kinds of things you look at?

[00:43:49] TH: Yeah, well, there are a couple of good signs that it's a healthy project. One of 
which is that you've got a broad contributor base. I don't know if I'll say anything uniquely 
interesting here, but broad contributor base, right? That's active. So, you're seeing contributions 
go in, you're seeing bug fixes go in, you're seeing new features released, you're seeing a good 
release cadence. That's on the sort of developer side. If I think about users, what I always think 
is I want to hear not from the people who built it, how they think it should be used. I want to hear 
from the users, how they were actually using it. Were there rough edges? Where did it work 
really well? Where did it sing? So, like looking for end users who are active in the community 
who or maybe they're on Slack, and you can ask them, or like for us, we always make sure that 
we encourage people to give talks at like Kub Con, or any other sort of open source summit, so 
they can share what they've learned. If you've got folks who are leading lights in the industry, 
giving talks at premier conferences about getting detailed descriptions of how they use an open 
source project and why it's been successful, and then I think the project is probably quite 
healthy.

[00:44:56] JBH: Is there like a cultural aspect to your open source project? Some are crankier 
than others. Some are more fraught than others. How do you kind of set the culture for your 
open source community?

[00:45:07] TH: Culture is a good one. I mean, I think it's – well, I mean, it goes without saying. 
It's super crucial for any group of folks, right? Whether it's open source or commercial or a 
company or a collaborative thing. In terms of setting the culture, I'm a believer in you got to walk 
the walk, right? So, how you engage with your community, other people are going to copy, 
especially for the founders, the maintainers, the creators. So, what you want to do, certainly if 
you create it and maintain the project is, you should be on Slack. Maybe not every day. Maybe 
you can't do that. But you should be on Slack and interacting with folks. You should be them. 
You should be thinking about doing that customer success function in the enterprise world. That 
should be open source team on Slack or Discord, or whatever it is.

© 2022 Software Engineering Daily 21



SED 1500 Transcript

So, part of your job in open source is not just to write code. I think healthy open source projects, 
especially, have those core teams that are writing code for sure. But they're also writing docs. 
They're also interacting and answering questions on Slack or Discord. They're giving talks in 
community forums, going to meetups even, right? Obviously, there's a scaling question there 
that you can do less and less of that.

[00:46:16] JBH: Yeah, that's kind of what I'm getting at, like, you have these leaders who get 
very focused on these technical problem sets, which are very delightful, I get that. But then 
there's this problem of bringing people into the fold and keeping that healthy, like influx of new 
users, new contributors, which I think is kind of an interesting tension, you've got these super 
technical people who want to go deep on the tech. But then if you keep doing that, then you end 
up with not enough new people coming contributors. So, it's interesting, and I think it's just such 
a lively project. It's something to be really excited about.

I'm just curious, I work with a lot of MBA students here and there, and there's a lot of hand 
wringing about whether they should go to a startup, or go to a large company. I was just curious, 
I'd love to be able to tell people that there's benefit to being in a big company, when you come 
as a founder, it's not a detriment to have that big company background. So, I guess my question 
is, what did you find that you brought with you from the large company experience?

[00:47:14] TH: Yeah, at the end of the day, when you're a startup, you're going to have to sell to 
other companies. If you've only ever worked in a startup, it's going to be very hard to imagine 
what it's like in a big company and that's who you're often going to sell to. If you're selling to 
other startups, okay, that's great. But what 90% of startups fail, or 99%, or whatever that number 
is. So, that's helpful. But I think you're living in a small startup so you can imagine what that is 
like. It's hard to imagine what it's like in a big company unless you've already worked at one.

[00:47:41] JBH: Interesting.

[00:47:42] TH: So, that would be one thing, just like that basic knowledge of like, “Yes, we've 
spent two years designing a new product, and it didn't get released.” Or whatever. And yes, I 
have to go through get three levels of approval to purchase this piece of software. I really can't 
even do that. I had to go get my manager. That kind of socialization, that kind of –

© 2022 Software Engineering Daily 22



SED 1500 Transcript

[00:48:02] JBH: You're less dismayed. You have less dismay when you are confronted with this 
timeline.

[00:48:09] TH: It's just like empathy for your users, for your customers at the end of the day, 
and I think it's just very hard to understand that. Now, that's like just very vague and kind of 
squishy. But I think the biggest difference that like somebody who's worried about like, should I 
go into a big company or a small company first? If they eventually want to found a company, is 
just that like, I think you do want experience especially in – working in a big company is great, if 
you can work in the area that's somewhat related to what's you're going to go find a company 
around. And obviously, that's hard to know. But like, if you spend a bunch of time in marketing 
and a big company, then when you leave, it'd be great if you could sell a marketing product 
because you know what that is like, and what procurement looks like. What it looks like to bring 
in a new piece of software and train everybody up, and so on and so forth.

[00:48:56] JBH: I love that, because you had this theme of policy in your regular work life, and 
then it kind of kept your thought process going and you had a domain to extend into. That's 
actually great. I'm going to use that. Tim, I really appreciate your generosity to come on the 
show. Great comments. I've learned a lot about Styra and I look forward to talking more in the 
future.

[00:49:16] TH: Thank you so much for having me, Jocelyn. This was fun. As always, I'm always 
happy to come back.

[00:49:20] JBH: Great. Thanks so much.

[END]

© 2022 Software Engineering Daily 23


