
SED 741 Transcript

EPISODE 741

[INTRODUCTION]

[00:00:00] JM: In a cloud infrastructure environment, failures happen regularly. The servers can 

fail, the network can fail, and software bugs can crash your software unexpectedly. The amount 
of failures that can occur in cloud infrastructure is one reason why storage is often separated 

from application logic. A developer can launch multiple instances of their application with each 
instance providing a stateless environment for serving API requests. 

When the application needs to save state, it can make a call out to a managed cloud 

infrastructure product. Managed cloud databases provide a reliable place to manage application 
state. Managed object storage systems, like Amazon S3, provide a reliable place to store files. 

The pattern of remote cloud services does not work so well for on-prem and hybrid cloud 
environments. In these environments, companies are managing their own data centers and their 

own storage devices. 

As companies with on-prem infrastructure adopt Kubernetes, there's a need for ways to manage 
on-prem storage through Kubernetes. This might sound like a complicated subject, but we have 

Saad Ali from Google to explain the subject in much more detail. Saad is a senior engineer at 
Google where he works on Kubernetes. He's also a part of the Kubernetes storage SIG, S-I-G, 

Special Interest Group. Saad joins the show to talk about how Kubernetes interacts with storage 
and how to manage stateful workloads on Kubernetes. We discussed the basics of Kubernetes 

storage, including persistent volumes and we get into more complicated subjects like the 
container storage interface and the future of Kubernetes, where the project is going and Saad’s 

involvement in it. 

Before we get on with the show, I want to mention we’re looking for sponsors. If you are 
interested in sponsoring the show, you can go to softwareengineeringdaily.com/sponsor. We 

have 50,000 subscribers and many of them are software engineers, perhaps most of them, and 
we would love to get some sponsorship for Q1. 

© 2019 Software Engineering Daily �1



SED 741 Transcript

We are also doing a listener survey. If you go to softwareengineeringdaily.com/survey, you can 

find out more about that survey and you can take the survey if you're a listener. We would love 
to get your feedback and know what we’re doing wrong, what we’re doing right. With that, let’s 

get on with the episode. 

[SPONSOR MESSAGE]

[00:02:45] JM: OpenShift is a Kubernetes platform from Red Hat. OpenShift takes the 
Kubernetes container orchestration system and adds features that let you build software more 

quickly. OpenShift includes service discovery, CI/CD built-in monitoring and health 
management, and scalability. With OpenShift, you can avoid being locked into any of the 

particular large cloud providers. You can move your workloads easily between public and private 
cloud infrastructure as well as your own on-prim hardware. 

OpenShift from Red Hat gives you Kubernetes without the complication. Security, log 

management, container networking, configuration management, you can focus on your 
application instead of complex Kubernetes issues. 

OpenShift is open source technology built to enable everyone to launch their big ideas. Whether 

you're an engineer at a large enterprise, or a developer getting your startup off the ground, you 
can check out OpenShift from Red Hat by going to softwareengineeringdaily.com/redhat. That's 

softwareengineeringdaily.com/redhat. 

I remember the earliest shows I did about Kubernetes and trying to understand its potential and 
what it was for, and I remember people saying that this is a platform for building platforms. So 

Kubernetes was not meant to be used from raw Kubernetes to have a platform as a service. It 
was meant as a lower level infrastructure piece to build platforms as a service on top of, which 

is why OpenShift came into manifestation. 

So you could check it out by going to softwareengineeringdaily.com/redhat and find out about 
OpenShift.

[INTERVIEW]

© 2019 Software Engineering Daily �2



SED 741 Transcript

[00:04:53] JM: Saad Ali, you are a senior engineer at Google and you’re also on the SIG 
Storage for Kubernetes. Welcome to Software Engineering Daily.

[00:04:59] SA: Thank you very much. Glad to be here. 

[00:05:01] JM: So when I talk to people in the Kubernetes community about the issues in 

Kubernetes and Kubernetes that are still not completely resolved, one of the things that seem to 
frequently come up is stateful versus stateless workloads and the idea that it is difficult to run a 

stateful workload on Kubernetes. Could you disambiguate what is a stateful workloads?

[00:05:26] SA: Sure. So let's start with what a stateless workload is. So if you deploy a 
traditional containerized container on to Kubernetes running on Docker, you couldn't have your 

application do whatever you want inside that container. It can write to what appears to be the file 
system. The problem is that as soon as that container is terminated, anything that was written to 

the file system is gone. So any time that container is terminated, it's moved, and if you're 
running in Kubernetes, your containers can move around if there's resource constraints, there is 

not enough resources on a given node. They can move around. 

So as your container moves around, any state that it wrote to disk is gone. So if you're trying to 
run any type of application that needs to remember what it did, so you put something in your 

shopping cart and you had that request handled by an application running in a container. If it 
happens that application got moved to a different machine, you come back and your cart is 

gone. That's pretty bad, or even worse, the information about your profile, for example. So we 
need to find a way to be able to persist that state independent of the lifecycle of a single 

container. That's kind of the domain that we operate in. 

[00:06:41] JM: When I spin up a container, it’s given some section of resources where I can 
write to. Why would a container move? 

[00:06:54] SA: Good question. So there can be a number of reasons. For example, let's 

imagine that you are running – One of the beauties of Kubernetes is you don't have to dedicate 
a single machine to a single application. You can kind of treat your machines as a large pool of 

© 2019 Software Engineering Daily �3



SED 741 Transcript

compute, compute memory storage and applications are going to be dynamically assigned 

wherever there are resources. These applications can have priorities. So you can have a 
number of high-priority jobs that come in that basically take up all the resources on that machine 

and your application might get evicted. So if it gets evicted, and depending on how you're 
running it, it will get rescheduled to a different node. But there is a number reasons similar 

things can happen. Your workload is not guaranteed to remain running on the same node. 

[00:07:44] JM: I could just attach a database to my application and write my state to the 
database, or I could use something like Redis and have a dedicated Redis cluster that I'm 

writing my state to. Is there anything wrong with that approach?

[00:08:01] SA: There's nothing wrong with that approach, but then the question is where does 
your Redis database or your external database store its bits? Are you to run those in 

containers? If you're going to run those in containers, you're going to hit the same wall again. 
Somewhere this thing needs to persist beyond the containers. 

[00:08:18] JM: So the root idea here is that Kubernetes itself manages infrastructure as if the 

infrastructure is ephemeral rather than infrastructure that’s going to be around for a long time. 
We've been managing infrastructure in the cloud for a while and I thought cloud infrastructure 

was always supposed to be treated as ephemeral, whether you're talking about a node or a VM 
that’s running – I guess those can be the same thing. But these things are always supposed to 

be ephemeral. So how is this anything new?

[00:08:53] SA: So the interesting thing is that when you're running an cloud, you have a lot of 
managed services offered to you. So a lot of stateful – Or stateful services are offered to you, 

like Cloud SQL on GCP, for example, where you can write your state through an HTTP 
transaction and the storing of that state is now the problem of the cloud. They figure out where 

it's going to get stored. What disks it goes to? How it gets replicated? 

If you want to run your own database, if you want to run some sort of application that needs to 
read or write to a block device or to a file system and you want that information to be persisted, 

it turtles all the way at the bottom, but someone's got to store something to disk, and if you're 
responsible for that, you're going to need a layer to be able to do that outside of the container. 

© 2019 Software Engineering Daily �4



SED 741 Transcript

[00:09:44] JM: Okay. So could you define the term container attached storage?

[00:09:49] SA: Yes. Think of it as there are lots and lots of different types of storage. Storage is 
a very broad term. So let's start with what container attached storage is not talking about. There 

are databases. There are messaging queues. There are all sorts of high-level storage systems, 
and those don't really fall into container attached storage. When we talk about container 

attached storage, we focus on two areas; file and block storage. The reason we focus on those 
things are that the data path for both of those has been standardized in this part of standard 

operating system. 

So in the case of file, it's POSIX. In the case of block, it’s SCSI. With Kubernetes, as long as the 
data path is standardized, we can control the control path. So for both block and file, we’re able 

to take block and file volumes and make them available inside of a container for a workload to 
use regardless of where that workload is basically scheduled. As it moves around from machine 

to machine, node to node, we will automatically move that storage with it, and if that storage is 
capable of being persisted beyond the lifecycle of a single container, you are able to store your 

state beyond the lifecycle of a single container. So that is what I call container attached storage. 

[00:11:13] JM: There are people who are listening who are thinking, “Wait, I store my stuff in a 
database. What is file storage? What is block storage?” Can you explain the relationship 

between those storage types and a database?

[00:11:26] SA: Absolutely. So if you think about the way that a database works, it is just another 
application that's running somewhere on your machine and it's going to be consuming CPU 

memory while it's running and it's going to be writing its states somewhere. Traditionally, if 
you're running on bare metal or a virtual machine, you're going to probably write it to that local 

disk, or you're going to have some remote disk that's available to you in the form of like a SAN 
or a network attached storage system, an NFS system. If you're running in cloud, you have 

these cloud virtual volumes. But somewhere, that state needs to be persisted. 

Traditionally what happened was that the folks who wrote these databases and ran these 
databases would kind of make the determination of where they're going to store the bits and 

© 2019 Software Engineering Daily �5



SED 741 Transcript

they were responsible for really setting up the entire environment for this system. With 

Kubernetes, what we say is if you need to figure out how to write to a disk to store your state 
persistently, you can do so through the Kubernetes ecosystem and we take care of that 

automatic provisioning, automatic attachment, automatic mounting of the underlying discs, 
where the bits are actually going to be stored into your container. 

File and block are two ways to access the disk. Raw block is you’re accessing the disk directly. 

Most applications don't do this. They will instead consume a disk with a file system on it. When 
a disk has a file system on it, then you can consider it as a file volume and it will basically be a 

mounted directory that shows up inside your container and anything you write to that directory 
gets passed back to that volume to be persisted. I think that's the big difference between block 

and file. 

[00:13:15] JM: So what is the relationship between a database or there are also objects stores, 
like there's S3-like interfaces for different systems that you want to run yourself, objects storage 

systems. How do these databases and data storage systems or something like Redis, how did 
these utilize block or file storage? 

[00:13:39] SA: Sure. Databases vary from implementation to implementation. Some choose to 

write directly to block for performance reasons. They choose not to have a file system layer 
between them, and some will choose to support both block and file and some will choose only 

file. It depends on the implementation of the database. Then objects storage is a new cloud 
phenomenon, which is a very interesting pattern for persisting state. 

The interesting thing about object is that the data path has not yet been standardized. If you go 

to one cloud provider, you have one interface for how you read and write data. If you go to 
another cloud provider, you have a different interface, and now you have on-prem objects stores 

that are popping up with their own interfaces. 

So the data path hasn't been standardized, and what that means is that your application needs 
to be aware of the type of object store that it's consuming and it's kind of an application layer 

thing where they will modify the application to point to a specific object store and read and write 
from it. 

© 2019 Software Engineering Daily �6



SED 741 Transcript

The beauty of block and file is that since the data path has been standardized, your application 
can be portable with Kubernetes. If you consume block and file, you do so through a 

Kubernetes primitive called a persistent volume claim. A persistent volume claim is a way to be 
able to request storage in a generic way that is independent of the actual implementation of the 

storage. You say, “I want a terabyte of storage and I want it to be read-write.” That's pretty much 
it. Those are your requirements. Then the system takes care of figuring out how to make that 

available to you. 

We support dynamic provisioning, which is we’ll provision these volumes automatically for you if 
your cluster supports that, or we also support pre-provision volumes where a cluster admin 

would go ahead and create persistent volume objects ahead of time to make available to you to 
consume. But you as the application developer don't have to worry about that storage 

administration layer. You just worry about what the requirements for your application are and 
you define that, and the definition in the form of a pod definition or a higher level workload, like 

stateful set, or replica set, combined with the persistent volume claims, that configuration is 
portable across cluster environments. So you don't have to modify your application if you're 

running on top of Kubernetes as long as Kubernetes is running in whatever environment you're 
on. 

The way that I think about it is all these managed services ultimately need to read and write bits 

down to a disk somewhere, and this is the layer at the bottom. But it does beg the question of – 
Ultimately, as an application developer, I don't really care about the lower levels. I just want to 

store state and do it in it as easy a way as possible, and I think this is kind of the next challenge 
in terms of making things easier for folks. 

If I want to run a stateful application on Kubernetes, how do I do it? Today, what you have to do 

is go to one of these – The folks that are running these databases need to provide custom 
installations for Kubernetes and manage their PVCs, PVs. 

[00:16:46] JM: PVCs and PVs, meaning persistent volume claims and persistent volumes. 

© 2019 Software Engineering Daily �7



SED 741 Transcript

[00:16:50] SA: Right. Actually, they don't have to manage their persistent volume. They have to 

manage persistent volume claims. They have to figure out what the makeup of that application 
is. Is it a replica set? Is it a stateful set? This is custom for every application. So if you're not 

deeply familiar with how Kubernetes works or deeply familiar with how that particular stateful 
application works, it's a challenge to get it running. So when you hear folks saying that it's 

difficult to run stateful workloads on Kubernetes. It absolutely is. 

Kubernetes provides a very, very powerful volume plug-in interface at the lower-level, which 
makes it easy to be able to consume persistent storage wherever your workload is. But the 

challenge is at the higher level, how do you actually run a stateful application with these 
primitives that exists? So the pattern that's beginning to emerge now is operators. If you have 

an application, that application will provide a set of custom resource definitions, which are 
Kubernetes API objects as well as a controller that runs inside Kubernetes to manage the 

lifecycle of that stateful application. 

So it provides a custom Kubernetes-like interface for that application to be able to provision a 
new application in a very easy way, and that all the difficult logic of figuring out what the 

primitives are that they need to deploy for Kubernetes to run this application are part of that 
custom controller and CRD and they’re abstracted away from the folks that are trying to deploy 

these things. 

So you're going to see this operator pattern begin to emerge and evolve as we move forward. 
The SIG aps is pursuing a first-class, or a CRD called application, which is going to get married 

to operator soon and all of that is kind of being figured out right now. The application CRD just 
moved to beta and there's a lot of discussion going on in terms of what is it going to look like 

and all these. So a lot of exciting things going on there. 

[SPONSOR MESSAGE]

[00:18:53] JM: This episode of Software Engineering Daily is sponsored by Datadog. Datadog 
integrates seamlessly with container technologies like Docker and Kubernetes so you can 

monitor your entire container cluster in real-time. See across all of your servers, containers, 

© 2019 Software Engineering Daily �8



SED 741 Transcript

apps and services in one place with powerful visualizations, sophisticated alerting, distributed 

tracing and APM. 

Now Datadog has application performance monitoring for Java. Start monitoring your 
microservices today with a free trial, and as a bonus, Datadog will send you a free t-shirt. You 

can get both of those things by going to softwareengineeringdaily.com/datadog. That’s 
softwareengineeringdaily.com/data. 

Thank you, Datadog.

[INTERVIEW CONTINUED]

[00:19:48] JM: Let’s unpack some of that terminology. There is a subsystem in Kubernetes 

called persistent volumes. Persistent volumes abstract the details of how storage is provided 
and how it's consumed. So you have a persistent volume that gets consumed by a container 

through the persistent volume claim. So a container can say, “I want a persistent volume claim 
for some type of storage,” and the persistent volume API is going to say, “Okay. We’ve got that 

kind of storage.” Then persistent volume is the one that's talking to the actual storage layer. Can 
you talk through a little bit more in detail about how users use persistent volume claims and 

persistent volumes?

[00:20:34] SA: Absolutely. Ultimately, we try to break up users into two distinct groups for 
Kubernetes. One is application developers and the other is cluster administrators. The reason 

we do this is application developers are a set of folks that we do not want to expose to the 
underlying implementation details for a cluster, but cluster administrators are people who want 

to be aware of what's going on in their cluster. They want to control it. They’re the ones who are 
setting everything up. 

So there's actually a third object – Well, there's three objects in play here. There's the persistent 

volume claim, the persistent volume and the storage class. The persistent volume claim is 
squarely an application developer-facing object, and application developers should only interact 

with the PVC. They shouldn't worry about storage classes or TVs. So they request storage in a 
generic way and magically it should be fulfilled. 

© 2019 Software Engineering Daily �9



SED 741 Transcript

In order for that magic to happen, somebody, the cluster administrator, needs to make sure that 
they make some sort of persistent storage available. When we first started Kubernetes, there 

was only the persistent volume object storage classes didn't exist, and the way that it worked 
was a cluster administrator would go ahead and provision a bunch of disks and say, “These are 

the set of disks that are available for my application developers to use,” and for each disk they 
created – They manually created a persistent volume object to represent that disk. 

In a cloud environment, you can imagine this is something like a GC persistent disk Amazon 

EBS volume. On-prem it could be actually like something backed by EMC or NetApp or 
something like that, a file store. But regardless, the cluster administrator had to do a lot of 

manual work to set up these disks, and the challenge here was, one, it's a lot of manual work. 
Two, they had to predict what the usage patterns were for their application developers, and that 

was very painful. 

So we introduced a new concept called a storage class and a provisioner. A provisioner is just a 
controller for being able to automatically provision new volumes on demand. The storage class 

basically says, “When somebody comes along with a request to persistent volume claim, a 
request for storage, please use this controller, this provisioner, to provision a new volume and 

pass this provisioner these set of parameters. These are opaque parameters that only the 
controller understands.” 

What this allows is for dynamic provisioning on demand of storage when the user requests it. So 

now if you have the ability to provision these volumes dynamically instead of a cluster 
administrator and creating these PV objects ahead of time, they just create one or more storage 

class objects that point to a controller that knows how to provision volumes automatically, and 
that's it. They're done. Now their application developers are going to come along and they're 

going to create a PVC object. In that PVC object, they can directly reference a specific storage 
class if they want to, or if their cluster administrator marked one of the storage classes as 

default, they don’t actually need to specify the storage class at all. 

So when they create that PVC object, Kubernetes will say, “Okay, there's a storage class here. 
I'm going to use that. I’m going to call out to this provision or to provision a new volume,” and 

© 2019 Software Engineering Daily �10



SED 741 Transcript

the provisioner will provision the new volume and automatically create a PV object to represent 

that new piece of storage and bind it to the persistent volume claim and the user is off and 
running. 

So now as an application developer, if you have an application that's consuming a PVC, your 

application configuration file in the form of a pod or a higher-level workload combined with a 
PVC definition is portable. It worked on this cluster, but as long as if I move those to a different 

cluster, as long as that cluster administrator provides me a storage class, I'm going to have 
persistent storage automatically provisioned for this application when it starts. 

So there's a lot of really cool magic going on at that lower level. It's a very powerful interface, 

and this idea of dynamically provisioning volumes on demand as application developers needs 
them is kind of unique to Kubernetes. Kubernetes incubated this, and it’s kind of taken off. So at 

that lower level, there is a lot of really cool things going on. But at the higher level, how do you 
actually tie all of these things together into a stateful application. There're still a lot of 

challenges. 

[00:25:03] JM: If I understand this API correctly, I just want to repeat it, because this is taking 
me a long time to grasp a little bit and I still don’t get it very well. So I’m sure there’re people out 

there that this will be helpful for. The interfaces that if I’m the cluster “operator”, then I am 
standing up file storage and/or block storage with a persistent volume interface in front of it on a 

Kubernetes cluster. The application developers can get to say, “I know I need a SQL database.” 
Through Kubernetes, they’re going to make a persistent volume claim for file storage for that 

SQL database and they're going to describe – Under the covers, their part of the Kubernetes 
application is going to say, “Okay. I need a persistent volume claim with – Or let's make a 

persistent volume claim with this kind of configuration. I need this much file storage.” Then the 
Kubernetes master is a cycling through the cluster and looking for persistent volume claims that 

have not been satisfied yet, and the Kubernetes master is going to assign a persistent volume 
that matches the persistent volume claim. 

[00:26:20] SA: Or dynamically provision it. 

[00:26:22] JM: Or dynamically provision it. Dynamically provision. Okay –

© 2019 Software Engineering Daily �11



SED 741 Transcript

[00:26:24] SA: Using the storage class. 

[00:26:26] SA: On the fly, there hasn't been enough persistent volumes that have been created 
yet. Let’s us schedule some more. 

[00:26:32] SA: Automatically create a new volume. Automatically create a PV and use that 

instead of having those pre-provision. That's exactly right. We can dig into a little bit of that 
lower layer if you're interested. So how does a cluster administrator expose storage? So this is 

very interesting. When we first started with Kubernetes, we had a set of volume plug-ins that we 
supported and they were built into the core of Kubernetes. Those included the obvious cloud 

volume. So on GC, GC persistent disk. On Amazon, EBS volumes. But also NFS, iSCSI, fiber 
channel and a number of other volume plugins were all baked into the core of Kubernetes. What 

these volume plugins would do is they define that for this specific type of storage, here is how 
you provision that volume. Here is how you attach that volume to a given nod if that is a concept 

that makes sense for that volume plugins, and here's how you actually mount that particular 
volume into the container, because ultimately those processes are different for the type of 

underlying storage that you're using. 

If you're using, for example, say Portworx versus using a GC persistent disk on cloud, that is 
going to have a different interface for how you interact with it at the lower levels. So we created 

these volume plug-ins as an interface that can be implemented, and then Kubernetes uses 
those to do the operations that it needs, which are provisioning, attaching, mounting. 

So that interface as we grew with Kubernetes kind of matured, but the number of volume plug-

ins continue to expand, and it became very challenging for us as Kubernetes maintainers, 
because all of this is essentially third-party code that is living in the core of Kubernetes and it's 

very difficult to test. Often times for a lot of volume plugins, it actually went untested. It also 
meant that since these plug-ins were part of the core Kubernetes binaries, any bugs in this third-

party code would cause core Kubernetes binaries to crash. It also meant that any – The security 
privileges you provide these security binaries are automatically given to these volume plug-ins. 

© 2019 Software Engineering Daily �12



SED 741 Transcript

So we wanted to get away from that model, and we found that vendors also wanted to get away 

from that model. If you're a storage vendor, you don't want to be tied to the Kubernetes release 
process, and if there's a bug you got to wait and follow the massive Kubernetes release 

process, and maybe they don't want to open source their code in some cases. 

So, together with a vendor community – And Kubernetes at that time wasn't super mature. So 
what we did was we partnered with other cluster orchestrators, including Mesos, Cloud Foundry 

and Docker. We had Docker Swarm at the time. We all got together and decided we’re going to 
create a standard called the container storage interface. The purpose of this was to have one 

standard for how a storage system, a storage vendor could plug their storage into a cluster 
orchestrator. A cluster orchestrator being Kubernetes, Mesos, Docekr Swarm, Cloud Foundry, 

and that work started about two years ago and we’re very happy to announce that CSI went 1.0 
this last month, and Kubernetes 1.13 pushed CSI support to GA. What this allows now is that 

vendors can basically develop new extensions for new storage systems independently of the 
Kubernetes release. The way that they develop them is basically just like any other Kubernetes. 

It’s containerized. There is an interface that's defined. They implement that interface and they 
deploy on Kubernetes using the Kubernetes primitives that exists. You just do a Kubectl apply, 

and now support for a new storage system exists within Kubernetes and Kubernetes is able to 
allow application developers to begin to use new kinds of storage without having to modify the 

core Kubernetes code. 

So if you’re a cluster administrator, previously you were limited to the set of storage plug-ins that 
shipped with Kubernetes. You are of course responsible for setting up that storage system, but 

connecting that storage system to Kubernetes kind of worked out of the box. Now there's an 
additional step for storage administrators, which is you set up your storage system, set up your 

Kubernetes cluster, but you also deploy a CSI driver on your cluster to be able to allow 
Kubernetes to interact with that storage system. 

[00:31:01] JM: We did a show on the container storage interface, and one thing I took away 

from that is these different storage providers, they’re in a spot right now where – Well, I guess 
prior to the CSI, one of the problems that the CSI solved is if they want to write an API between 

their storage system and Cloud Foundry, for example, they have to write that and then they 
have to go and write a separate one for Kubernetes. These things are nontrivial to create, to 

© 2019 Software Engineering Daily �13



SED 741 Transcript

stand up a storage system and connect it in a reliable way orchestrators. So you have this end-

by-end potential matrix and the CSI sort of solves that by standardizing that API layer. 

To go back to that API layer, like let's just talk in terms of Kubernetes. The persistent volume 
claim versis persistent volume API. So as we talked about in the beginning, these are 

ephemeral clusters and you can stand up a container. You’ve got your persistent volume claim. 
It connects to a persistent volume. You've got your PostgreS database. It's writing to file storage 

that is supplied by the persistent volume that's meeting your persistent volume claim. What 
happens if your container gets blown away and your database application is no longer running? 

The database file has been written somewhere on a persistent volume. What happens then?

[00:32:30] SA: So it depends on how you set up your workload in Kubernetes. Traditionally, 
you’ll set it up as a stateful set or a replica set, which means that when that pod that's running 

has an issue, for example, the container inside of it crashes for some reason, or that pod gets 
terminated because there's not enough resources on that machine. Kubernetes says, “Okay, 

there's another controller.” For example, like a replica set controller or a Daemonset controller or 
a workload controller, stateful set controller, for example, will say, “I expect there to be maybe 

three pods running on this cluster for this particular stateful set, but I see that there's only two. 
One of them has crashed. I am going to create a new pod to ensure that there is always three 

running, because that's what the user requested,” and it will create the new pod object. 

When the new pod object is created, it is referencing the PVC that already exists in the system, 
and the PVC exists independent of the original pod, the original container, and the PVC is the 

pointer to this state that has been persisted outside of the cluster somewhere. So now when the 
pod get started, the Kubernetes controllers work to make sure that that storage that that PVC is 

pointing to gets the attached and mounted into that new container inside that new pod. When 
that new pod starts to run, all of that state is available inside that pod. 

[00:33:57] JM: You touched on the operator pattern earlier. Can you explain the operator 

pattern in more detail?

[00:34:03] SA: Sure. It's definitely not my expertise, but I can touch on it. My understanding is 
that if you have a complicated app, it doesn't necessarily need to be stateful, but stateful apps 

© 2019 Software Engineering Daily �14



SED 741 Transcript

tend to be more complicated. Doing operations, like basically day two operations, things like, “I 

want to upgrade my application.” “I want to scale out my database.” “I want to scale in my 
database.” Those require a lot of careful orchestration that is above the Kubernetes layer. 

This orchestration is unique to the application. So what these operators are, they’re just like 

every other component in Kubernetes. There is a piece of API, which is the CRD, which allows a 
user to be able to interact with this operator, and the operator itself is just a controller, which is a 

pod with an application that's monitoring these API objects and doing something. 

So the idea is you deploy an operator and the operator starts to run. You create a CRD that 
defines, “I want my application to look like this. The operator sees that CRD and says, “Okay, 

the customer asked, or the user asked me to start a Redis instance, and these are all the 
configuration specifications for this instance. I am going to translate that into what is required for 

running that instance on Kubernetes. So it will automatically provision the workload objects and 
the PVC objects that are required to get that instance running.” 

Once that instance is running, users can then create more CRDs to do more operations against 

that operator. So for example, if they want to upgrade to a new version of Redis, they can 
modify configuration file to say, “Instead of Redis 1.0 or whatever, I want to move to 1.2.” The 

operator sees that change and it orchestrates the update of the Redis instance by carefully 
deleting and updating the Kubernetes components that make up that instance. So in that way, 

it's basically a layer above Kubernetes to manage complicated applications. 

[00:36:09] JM: You work at Google on GKE. You're also on the SIG storage. So that's the 
special interest group that is focused on open source efforts and conversations around storage. 

So you have a lot of conversations with both practitioners at Google and practitioners elsewhere 
around how they are working with storage, the frictions they’re encountering, the challenges at 

the cutting edge. Give me some picture of the best practices for managing stateful Kubernetes 
workloads and – Just whether you're an operator or an application developer. 

[00:36:50] SA: Sure. A lot of this honestly is still being flushed out. It's early, but the general 

patterns that are beginning to emerge are, if you have a very simple stateful application, you 
can use PVCs directly, is a very powerful interface that'll work and you need to understand that 

© 2019 Software Engineering Daily �15



SED 741 Transcript

you're going to be responsible for figuring out how you’re going to upgrade that application if 

downtime is an issue. How you're going to scale out the underlying storage if you need to. 
Things like that. 

For larger stateful applications that are more complicated, that is not going to fly. You cannot 

expect end-users to figure out what the stateful sets and all the different Kubernetes primitives 
are that they're supposed to deploy on Kubernetes. They're going to have to rely on the 

application developer to provide some sort of higher abstraction that they can interact with, and 
that would be operators. 

For application developers who manage these stateful, complicated stateful applications, they 

should look at the operator patterns. The operator pattern is starting to become standardized. 
There is machinery that is being built to allow kind of automatic generation of at least the basic 

code that's required for it, the basic API objects. There're a lot of work that's going on in that 
ecosystem. I’d say get involved with that. Take a look at what's going on. Figure out what's the 

latest and greatest and basically double down on operators. 

[00:38:13] JM: What else goes on in the SIG around storage? This special interest group.

[00:38:19] SA: It has been a lot of work over the last year or so to get CSI support into 
Kubernetes. Independent of the SIG, there is also the CSI community, and in the CSI 

community we've been standardizing the interface. In Kubernetes, we’ve been picking up that 
interface and exposing it into Kubernetes. We’re also working on features, feature additions to 

the storage system. 

So when Kubernetes first came out, it only supported file. It didn't support raw block. Raw block 
has been moved to beta as of the 1.13 release. We also work on features basically at that layer 

to make it easier for Kubernetes users to be able to consume storage systems that are not 
necessarily accessible to every node in the cluster. 

So you can imagine if you're running in cloud, you might have a cloud volume that is only 

accessible by a single zone, or if you're running in an on-premise environment, particular 
volume may only be available on a given rack. So we've been working to create an interface 

© 2019 Software Engineering Daily �16



SED 741 Transcript

that allows a storage system to advertise that, “Hey, this volume is not available to all nodes. 

Here are the subset of nodes that it will be available to,” and do so in a generic way so that we 
don't have to hardcode the concepts of rack, zone, etc., etc., into Kubernetes, but allow the 

Kubernetes scheduler to be aware that this volume has limitations and constraints and use 
those constraints to smartly schedule where that volume is going to be placed.

In addition, it could take a step further instead of basically having the workload follow where the 

volume lands, we now have the ability to have the scheduler influence where a volume is 
provisioned. Because community supports dynamic provisioning, we now have the ability to 

have a volume not be provisioned until the workload that's using it has been scheduled, and the 
scheduler at that time can help make the determination of where the volume should be 

provisioned and pass that information along to the storage system. 

So we’ve been working on a number of features to kind of extend and make that lower level 
storage interface more and more powerful. Some of the areas that we’re going to be looking at 

in the next year or so are more storage management type features, things like how do you take 
a snapshot of a volume? The ability I think you alluded to that a Kubernetes cluster should kind 

of be ephemeral. You should be able to take down a cluster and be able to re-create it and 
everything should just exist. But what about the storage that backs it? If I lose a particular 

volume, how do I recover that?

Traditionally, there have been a set of operations that allow you to snapshot and restore a 
volume or back it up to an off-site and restore from that off-site, and we’re trying to figure out 

what those operations are going to look like in that Kubernetes interface. So last quarter, we 
released an alpha release of the snapshot, volume snapshotting and restoring. But there's going 

to be a lot of work in figuring out how that's going to mature and then how is it going to tie into 
that higher application level concepts of operators that we've been talking about. 

Ultimately, there's a lot of cool work that we do at this storage layer, but application developers 

are not likely going to be using this directly. They’ll be using it through operators or CRDs and 
how do we make sure that we are exposing an interface that makes sense end-to-end? 

© 2019 Software Engineering Daily �17



SED 741 Transcript

So one of the things that I'd like to do over the next year' is work more closely with my partners 

in SIG aps to try and make sure that we come up with interfaces on both ends that meet in the 
middle and serve users in the way that that's best for them. 

[00:42:07] JM: Let’s talk about the example of snapshot. Why is Snapshot an important 

problem for Kubernetes to have built into it? I guess explain what snapshot is. 

[00:42:18] SA: This can get very controversial depending on who you talk to. Within the SIG, 
the general idea is that it's a point in time image of the current state of a volume, and that point 

in time image can then be used at a later point even if you continued to write other things to that 
volume. It can be used to restore a volume to that previous state. 

The current alpha implementation allows you to create a snapshot of a given volume and be 

able to restore that snapshot to a new volume. The reason that it's important to be able to do 
this is, for example, if you're a database administrator and you want to make a risky change to 

your database, it would be nice if you had some way to be able to undo the damage of 
something bad were to happen. 

So traditionally what they do is they'll reach out to the storage system, create a snapshot of the 

volume, do the risky operation. If things don't work the way that they want to, they have the 
ability to restore to the previous state and continue from there. Now, they can still do this with 

Kubernetes, but the problem is that in order to do so, they have to go around Kubernetes and 
understand what the storage system is and how to poke that storage system for which volume 

to actually trigger that snapshot. 

So in the beginning, we were questioning whether snapshots were something that makes sense 
in the Kubernetes API. What we landed on was, yes, because it is an operation that is not solely 

the domain of the storage administrator. Application administrators are interested in being able 
to issue this operation. We want to make the application administrators only have to interact 

with Kubernetes. To enable portability across different environments, we don't want them to 
have to go around and build systems to directly tickle some specific implementation of this 

cluster. 

© 2019 Software Engineering Daily �18



SED 741 Transcript

So for that reason, we decided that snapshot is important and we want to surface it in the 

Kubernetes API. But it is a challenging interface to try to introduce in Kubernetes in a thoughtful 
way for a number of reasons. One being the fact that Kubernetes is a declarative API where it is 

eventually consistent, but a snapshot is very much kind of an imperative, like take a snapshot 
now operation. So marrying that with the Kubernetes API has been a challenge. But we’re going 

to continue to revise this and make it as useful for application developers as possible as we go 
forward. 

[SPONSOR MESSAGE]

[00:44:59] JM: HPE OneView is a foundation for building a software-defined data center. HPE 

OneView integrates compute, storage and networking resources across your data center and 
leverages a unified API to enable IT to manage infrastructure as code. Deploy infrastructure 

faster. Simplify lifecycle maintenance for your servers. Give IT the ability to deliver infrastructure 
to developers as a service, like the public cloud. 

Go to softwareengineeringdaily.com/HPE to learn about how HPE OneView can improve your 

infrastructure operations. HPE OneView has easy integrations with Terraform, Kubernetes, 
Docker and more than 30 other infrastructure management tools. HPE OneView was recently 

named as CRN's Enterprise Software Product of the Year. To learn more about how HPE 
OneView can help you simplify your hybrid operations, go to softwareengineering daily.com/

HPE to learn more and support Software Engineering Daily. 

Thanks to HPE for being a sponsor of Software Engineering Daily. We appreciate the support.

[INTERVIEW CONTINUED] 

[00:46:23] JM: We did a show about Kubernetes snapshotting, and it was with a vendor that 
does this as part of their service offering, and there are a lot of vendors that are filling in the 

gaps of the storage world in Kubernetes where there are all of these little frictions that exist in 
managing state and Kubernetes. There are vendors that provide solutions to some of these 

things. Why is it that vendors are able to build solutions to this but it's not easy to just snap your 
fingers and get into Kubernetes API?

© 2019 Software Engineering Daily �19



SED 741 Transcript

[00:46:59] SA: That's a great question, and the answer to that is that vendors work with a very 
tight set of – Like they control the full stack, essentially. They control the storage system and 

they can choose an interface that will work nicely with their system. When we introduce one of 
those operations into Kubernetes, we need to ensure that it works not just with a single vendor, 

but that it works across vendors and we need to do so in a way that doesn't end up being the 
lowest common denominator interface. We don't want to stifle the innovation that's going on at 

the storage layer with these storage vendors. We want them to be able to expose the full power 
of their storage system, but at the same time do so in a way that is going to be portable for 

application developers. 

Doing so requires a lot of care and a lot of thoughtful consideration on what those API primitives 
are going to look like. So you're going to see storage vendors actually be far ahead of where 

Kubernetes itself is, and what we do is we look at the storage vendors and we figure out what 
are the common set of operations that would be useful to expose to application developers and 

then thoughtfully work with the storage vendors as well as end-users and everyone in our 
community to try to come up with an interface that will work for everyone. 

[00:48:19] JM: There are open source projects related to orchestrating storage – Well, I guess I 

should say specifically, Rook is an orchestration system for storage that is deeply integrated 
with Kubernetes. Explain what Rook does. 

[00:48:32] SA: Sure. The way that I see it is Rook is an operator for Ceph. Ceph is a storage 

system that can be deployed on top of the existing disks and provides – It's a software-defined 
storage system. So it's one way to be able to pool the underlying disks that you have and 

expose storage systems to your cluster. Running Ceph manually has been very challenging for 
those who are familiar with Ceph. So what Rook did was come up with an operator for deploying 

Ceph on top of Kubernetes. 

I try to decouple the consumption of storage from the making available of storage, and Rook is 
squarely in the domain of making a specific type of storage system available to a cluster to use. 

Where Kubernetes storage SIG is interested is kind of the line outside of that, which is some 

© 2019 Software Engineering Daily �20



SED 741 Transcript

storage system exists. It could be Ceph via Rook. It could be NFS. It could be something else. 

How do I actually consume that and make that available to application developers?

[00:49:35] JM: If I understand correctly, Ceph offers file object and block storage through its 
API, and if Rook is on top of Ceph, Rook is a layer into Ceph and Rook provides a Kubernetes 

friendly interface to working with Ceph, what else do you need? Why do you care about 
something that's agnostic of Rook? If Rook takes care of all three of the storage formats, what 

else could there be? 

[00:50:02] SA: Rook is one option for storage. There are a number of options, and as a cluster 
administrator, you have to look at what the requirements for your application developers are and 

choose what's right for you. Their storage can vary in the way that it's exposed. Rook will pool 
the underlying volumes that are available on every single machine and expose that to end 

users. But perhaps in your environment, you have a separate multimillion dollar storage system 
that you have that you would like to use. So we don't want to dictate any of that. We want to 

work with whatever storage is available to you in whatever environment that you're in. 

[00:50:37] JM: Right. So if I'm a bank, I've got decades of different storage type that are 
running in appliances on my data center. I can't just say I, “All right, Rook. Solve my storage 

problem. I need persistent volume interfaces for all those different storage systems that are on 
my cluster,” if I want to run Kubernetes over them.

[00:50:59] SA: Yup. 

[00:51:00] JM: So there's more and more cloud providers these days. Now there's like cloud 

providers built on cloud providers, and many of them have some kind of Kubernetes offering. I 
mean, all the problems that we're discussing for a single Kubernetes cluster trying to manage 

storage and manage the application developers in a friendly way, these problems are just 
exponentially harder for a cloud provider that is trying to do this in a systematic fashion. 

If you’re a cloud provider, what are the additional challenges for thinking through the storage 

layer of Kubernetes? 

© 2019 Software Engineering Daily �21



SED 741 Transcript

[00:51:37] SA: Sure. Honestly, I think to a certain extent it's easier to be a cloud provider than it 

is to run on-prem. When you're in a cloud environment, you get to dictate the exact type of 
storage that your customers are going to have available to them, and you can provide a set of 

volume plug-ins that will allow your Kubernetes instance to be able to communicate with those 
volume plug-ins. Prior to CSI, those plug-ins were built into the core of Kubernetes. 

So the challenges were in figuring out the bugs in those storage systems and the bugs of the 

Kubernetes layer, but there aren’t inherent major complexities there. If a particular cloud the 
customer chooses to use other storage on top of what is provided by the cloud provider, for the 

most part that is the responsibility of the customer and the storage vendor that they choose on 
top that provides an additional software defined storage layer to figure that out how are you 

going to deploy it. How is it going to interface with Kubernetes? 

The challenge I think is for folks trying to run Kubernetes on-prem in their own environments 
and trying to figure out how do I run these storage systems? How should they interact with 

Kubernetes? Who is going to provide me my CSI driver? How do I get it running? If I'm running 
within a virtualized environment, I'm running VMware or something, how do I expose storage 

through that VM layer into the VM so that they’re available to the containers inside those? At 
least for our specific cloud provider, GKE, Google Cloud Kubernetes Engine, where we 

recognize that problem when we’re trying to provide a managed solution for on-prem as well 
where we’ll say, “We’re trying to solve a lot of the problems that exist in that space and give 

folks their managed solution as well.” 

[00:53:24] JM: All right. Well, we're here at KubeCon and there's a gigantic amount of people 
here, 7,500 people. You work on GKE. So you’re at the epicenter of Kubernetes development as 

much as anybody. Give me some predictions or tell me what you're excited about in the 
Kubernetes community. 

[00:53:44] SA: That's a good question. I am very, very excited to be here. Tim Hawkins, who is 

the person that recruited me to the Kubernetes team early on in 2014 likes to say that when I'm 
at KubeCon, I feel like I'm with a thousand of my best. Honestly, I feel that way too. It's very 

nice. It's a great wonderful community. In terms of what I'm most excited about, I think there is a 
couple of things. One is just continued adoption and growth of Kubernetes and realizing that 

© 2019 Software Engineering Daily �22



SED 741 Transcript

we’re reaching a state where a lot of the innovation is not necessarily happening within 

Kubernetes. It’s happening at a layer above Kubernetes and figuring out how we enable that 
and how we bridge the gaps so that this ecosystem continues to grow. 

Then the second is basically an extension of that, which is what are the kinds of features that 

we’re going to expose there that are going to make application developers’ lives easier and 
make deploying and managing applications in clustered environments dead simple. The way 

that I like to think about it is that back in the day, before there were operating systems, folks who 
are developing applications had to be innately aware of the specific hardware that they were 

deploying that particular application on, and that was painful and anytime they had to move that 
application they have to re-architect their application, and operating systems came along, 

exposed to standard interface and you had this proliferation of applications for individual 
machines. 

In the distributed systems world, we've kind of been operating in that archaic way for a very long 

time. Distributed system developers architect their application for the specific environment that 
they run in, and that's painful. It's slow. They should be investing their efforts in optimizing and 

making their applications better, not battling with the environments that they run in. I think there 
is a lot of growth or a lot of opportunity to continue to do that. Kubernetes in my head is like an 

operating system for distributed system environments, and it's a basis. There's going to be 
things above it. There's going to be things below it, but I'm really excited to see where it goes 

over the next year. 

[00:55:56] JM: You already see this, the higher stuff starting to happen with the degree to which 
frontend developers are feeling empowered. You can now be a team of a frontend developer 

and a designer and build a startup, which is kind of amazing. When you’re talking about that 
layer on top of Kuberntes that’s a higher level layer, what are the problems there that are being 

solved? What are you seeing on top of that layer? Why is it exciting to you? 

[00:56:24] SA: Oh, man. Some of the projects that stand out there, of course we talked about 
the operator pattern a lot. This is just for running specific applications. But there's a couple other 

projects. Istio and Knative that are very, very interesting. When you start running applications at 
scale, you run into a set of problems like, “How do I secure my communication between the 

© 2019 Software Engineering Daily �23



SED 741 Transcript

different microservices that make up my application?” “How do I do logging?” “How do I do 

monitoring?” “How do I do service discovery between these applications?” 

The way that a lot of folks initially approach this problem is that they make it the business of the 
application to figure that out. So every application has bits of this code tucked in to try and do 

this, and it doesn't really scale. If you want to change the way that service discovery happens, 
you need to update every application within your ecosystem. If you're running at large scales, 

that could be hundreds, thousands of microservices that you need to update. 

So Istio is an open source project that was formed that built on top of the other primitives that 
Kubernetes provides and tries to solve these challenges of trying to make it easier to glue 

together microservices so that application developers can be even more – One more step 
removed from the complexity of how the application runs, and they can focus more on the 

application code. 

Then Knative is a play in the serverless space which is taking things a step further and saying, 
“Just give me your application that you want or your code that you want to run as a container, 

and this system will figure out how to run it for you. You don't have to worry about Kubernetes. 
You don’t have to worry about how things interact with each. We’ll make it even more simple for 

you.” 

So I am really excited to see where these projects are going to go in the future and see adaption 
grow there and see how they’re solving problems for customers in terms of just, “Don't worry 

about the infrastructure. Focus on applications.” 

[00:58:26] JM: Saad Ali, thank you for coming on Software Engineering Daily.

[00:58:28] SA: Thank you very much for having me. It was a pleasure. 

[END OF INTERVIEW]

[00:58:33] JM: GoCD is a continuous delivery tool created by ThoughtWorks. It's open source 
and free to use, and GoCD has all the features you need for continuous delivery. Model your 

© 2019 Software Engineering Daily �24



SED 741 Transcript

deployment pipelines without installing any plug-ins. Use the value stream map to visualize your 

end-to-end workflow, and if you use Kubernetes, GoCD is a natural fit to add continuous 
delivery to your project. 

With GoCD running on Kubernetes, you define your build workflow and let GoCD provision and 

scale your infrastructure on-the-fly. GoCD agents use Kubernetes to scale as needed. Check 
out gocd.org/sedaily and learn about how you can get started. GoCD was built with the 

learnings of the ThoughtWorks engineering team who have talked about building the product in 
previous episodes of Software Engineering Daily, and it's great to see the continued progress on 

GoCD with the new Kubernetes integrations. You can check it out for yourself at gocd.org/
sedaily. 

Thank you so much to ThoughtWorks for being a longtime sponsor of Software Engineering 

Daily. We are proud to have ThoughtWorks and GoCD as sponsors of the show. 

[END]

© 2019 Software Engineering Daily �25


