
SED 953 Transcript

EPISODE 953

[INTRODUCTION]

[00:00:00] JM: Java programs run in a very different environment than they did 10 years ago. 

Modern infrastructure often runs on containers sitting in a Kubernetes cluster. The optimal 
configuration for a Java program in that context is different than it was for an environment 

dominated by virtual machines and bare metal. When you are co-scheduling your services with 
each other, those services could be fighting for resources. You may want to optimize them with 

more ahead of time compilation. 

Quarkus is a system for accelerating Java performance through the use of GraalVM. In a 
previous show, we explored the basics of GraalVM. In today’s show, Guillaume Smet and 

Emmanuel Bernard join the show to describe an application of GraalVM, which is the 
acceleration of Java. Guillaume and Emmanuel are engineers at Red Hat and they’re working 

on changes to the Java ecosystem that are informed by the cloud and the rise of Kubernetes. 

GraalVM and Quarkus are fairly complex topics, but they seem very futuristic and they seem 
relevant. So I hope you get something out of this episode even if it’s a bit hard to understand on 

a technical level. If you are deeply familiar with Java, I think you will get a lot out of it. 

If you’re building a software project, post it on Find Collabs. Find Collabs is the company I’m 
working on. It’s a place to find collaborators for your software projects. We integrate with GitHub 

and make it easy for you to collaborate with others on your open source projects and find 
people to work with who have shared interests so that you can actually build software with other 

people rather than building your software by yourself. 

Find Collabs is not only for open source software. It’s also a great place to collaborate with other 
people on low code or no code projects, or find a side project if you’re a product manager or 

somebody who doesn’t like to write code. Check it out at findcollabs.com.

[SPONSOR MESSAGE]

© 2019 Software Engineering Daily 1



SED 953 Transcript

[00:02:17] JM: This podcast is brought to you by PagerDuty. You've probably heard of 

PagerDuty. Teams trust PagerDuty to help them deliver high-quality digital experiences to their 
customers. With PagerDuty, teams spend less time reacting to incidents and more time building 

software. Over 12,000 businesses rely on PagerDuty to identify issues and opportunities in real-
time and bring together the right people to fix problems faster and prevent those problems from 

happening again. 

PagerDuty helps your company's digital operations are run more smoothly. PagerDuty helps you 
intelligently pinpoint issues like outages as well as capitalize on opportunities empowering 

teams to take the right real-time action. To see how companies like GE, Vodafone, Box and 
American Eagle rely on PagerDuty to continuously improve their digital operations, visit 

pagerduty.com. 

I'm really happy to have Pager Duty as a sponsor. I first heard about them on a podcast 
probably more than five years ago. So it's quite satisfying to have them on Software 

Engineering Daily as a sponsor. I've been hearing about their product for many years, and I 
hope you check it out pagerduty.com.

[INTERVIEW]

[00:03:44] JM: Guillaume and Emmanuel, welcome to Software Engineering Daily.

[00:03:47] EB: Hello.

[00:03:49] GS: Hello. [inaudible 00:03:49].

[00:03:49] JM: We have done a show in the past about GraalVM and I want to spend most of 

the time assuming that people have some sense of what GraalVM is, because if they don’t, they 
can listen back to that last episode. But in case they don’t want to do that, give people a brief 

overview. What is GraalVM? 

[00:04:10] GS: Basically, GraalVM, simplified a bit, it allows you to create [inaudible 00:04:16] 
executable from your Java application and also support [inaudible 00:04:25] such as Ruby or 

© 2019 Software Engineering Daily 2



SED 953 Transcript

JavaScript. But if we focus on Java, the idea is to take your Java application transform it into an 

executable. The good thing with GraalVM is that compiler is written in Java, so it’s quite easy to 
debug, maybe not the exact term but at least it’s easier than with JDK.

Yeah, so you end up with very minimal executable and it also has the ability to start faster than 

the traditional JDK. Yeah, it’s quite impressive when it’s used Quarkus, because you can start 
your Java application in a few minutes and that’s a game changer. 

[00:05:20] EB: Yeah. If you take a step back, if you look at how Go applications are actually 

compiled and how they work, Go is a garbage collected language and they compile the 
application into a native executable that you run on the target platform, and that’s essentially 

what GraalVM provides to the Java universe, with caveats, but that’s what it provides to the 
Java universe. I think – I forgot the actual details of the interview you had with Thomas, but I’m 

pretty sure he probably mentioned that as some sort of a target. 

[00:05:54] JM: Most of that interview was talking about GraalVM as a polyglot language 
platform. Meaning that many different languages could execute on top of this single virtual 

machine. Today’s show is going to be mostly about how Java executes on top of that virtual 
machine. Is Java some kind of special case in terms of how it runs on GraalVM? 

[00:06:22] EB: It is a good question and I’m not 100% sure. I know in their mission, they 

definitely want Java to be kind of yet another language in the sense that the way they would 
support Java 8 and Java 9 and the futures of Java would just be just like as if it was somewhat 

of a different language. That’s what I understood from them. Yeah, that’s a good question 
whether Java is in some sort of a really first-class citizen at the implementation details.

[00:06:51] JM: Who is using GraalVM today and how are they using it?

[00:06:57] EB: Another question I’d have to say I’m not sure. But as you said, for why GraalVM 

really push this notion of polyglot and people looking after pretty high-performance for 
JavaScript language is another key language that they have. They were looking at that, 

because they were benefiting from a lot of the Java future machine technology to really run their 
language in a much more efficient way. 

© 2019 Software Engineering Daily 3



SED 953 Transcript

When we saw GraalVM, we were really interested in the pure Java aspect. To some extent, the 
polyglot aspect is not really core to the fact that it’s really useful for us. What we saw about it 

was the capacity – Because you precompile the application, as Guillaume was saying, the 
capacity to really start the application like in a few milliseconds, but also to minimize the 

memory usage. If people remember Java, it’s birth is from the 90s. At the time, the idea was to 
really optimize take one big machine, one big process that would actually run as many request 

per second as possible. Okay?

Then it’s some tradeoff. They really got very good throughput, but they made some tradeoff as 
far as consuming a bit more CPU and consuming more memory for that throughput. It wasn’t a 

problem at the time. Memory was cheap. Why it’s so relative? It’s funny how you really change 
the optimization of a time. We can come back to that later. 

But when we look at it today and in the universe of microservices, the way you scale is not so 

much by saying I’m going to get a beefier process or a bigger machine. It’s more I’m going to 
deploy my application a second time or a third time or a tenth time. Your unit of deployments 

has to be very compact to consume as less resource as possible. Some sort of orchestrator, of 
course nowadays, a lot of people are replatforming on Kubernetes. In this case, a container 

would be your unit of work. Your application would be deployed as several instance into different 
containers. 

Because of that, the fact that Java was a bit heavy on the memory usage, led to Java being a bit 

as, well, quite at a disadvantage in this replatforming. What GraalVM provides by changing the 
way – In a normal virtual machine, a Java virtual machine, the Java is interpreted and then we 

see the hard path and that hard path is actually compiled dynamically. 

To do that, the JVM has to keep a lot of information around classmate data. Who is the super 
class of who? What method has been overloaded? Which part of the method is used a lot 

versus not a lot? All of that information is necessary for the just-in-time compiler to do its job and 
do the best compilation possible at the time and change overtime. But that cost is pretty heavy 

in a microservice where you tend to have less code, more focused and sometimes that 
microservice is not too focused on having data. Maybe it’s resting point doing things.

© 2019 Software Engineering Daily 4



SED 953 Transcript

In that model, the size of the data you dedicate to your application that contains your object is 
very small compared to the metadata, we call it the meta space in Java. That is containing all of 

the information about the classes themselves. What GraalVM provides is essentially getting rid 
of the whole just-in-time compiler and all of the metadata associated with it by precompiling 

everything at build time, just like a Go application. 

[00:10:40] JM: If I understand correctly, what you’re doing with Quarkus is you’re looking at 
people deploying Java applications to Kubernetes and you’re saying the memory footprint of 

these Java applications needs to be lower. The way that we’re going to get it down is by being a 
little bit more aggressive with our pre-compilation and lowering the memory footprint of 

essentially the runtime execution, like hot path detection and memory retention stuff. Am I 
understanding it correct?

[00:11:18] EB: Yeah, that’s a good explanation. We’re from Red Hat. I don’t know if we said 

that. Red Hat is on a journey to really accelerate the deployment of Kubernetes via our 
distribution open shift. We do believe in that model. Then we have also a massive investment in 

our Java middleware. We’ve been trying to go into a cloud native journey of our Java 
middleware and of course make it run really as good as possible on Kubernetes. That memory 

usage was really a bid blocker and we’ve been walking with our open JDK. So the normal JVM 
side of things that Red Hat has quite a few engineers on that to try and find the big reason for 

Java being heavier than its competition in that kind of space. 

What we found is that by the nature of Java being very dynamic, being able to load classes at 
one time and a lot of interesting things like that, which gives a lot of power to Java. They had to 

keep a lot of metadata as you were describing. Also the Java middleware itself sort of abused 
the fact that Java was extremely dynamic. Every time you start your application, a framework 

will look at all of your classes. Try and find the one it’s interested in and so on and so on. That 
leads to a lot of operation that happen at runtime and a lot of memory consumed to do that job.

When we saw this, GraalVM, essentially it’s called ahead of time compilation. When we saw 

that model we realized, “Okay. That could be the game changer we’ve been looking for.” Instead 

© 2019 Software Engineering Daily 5



SED 953 Transcript

of going through incremental improvements on the memory usage, really go to the – How do 

you call that? Chasm I guess? At least for the Java ecosystem. Making sense?

[00:13:03] JM: Yeah. I guess I didn’t remember this about GraalVM. It does more ahead of time 
compilation than just-in-time compilation?

[00:13:15] EB: Yeah, they do – So that’s the funny part, right? When you think about GraalVM 

being able to run JavaScript, you’re thinking, “Well, they do just-in-time compilation and things 
like that,” which is true. But in the case of Java, there is no just-in-time compiler. They literally 

compile everything at build time. That’s why they can get rid of the whole just-in-time compiler. 
That’s much less got to bundle. Also, it lets them limit the metadata that is necessary to follow 

just-in-time compiler to do its job. They are assuming something about the Java application that 
is somewhat uncommon to a Java developer. They assume a close-world assumption. 

They assume that at build time, all of the cloud pass that will ever be used is known. They do 

static code analysis and do data code elimination to get rid of all of the unnecessary coding 
methods. That’s why you also gain in memory. 

It has a drawback, because as I was saying, a lot of framework in the Java ecosystem are built 

with this notion of reflection. Being able to load classes dynamically and so on. When we saw 
GraalVM, we said, “Okay. That’s great.” But the JVM itself cannot really solve the problem. The 

ecosystem also has to join the game, and Quarkus is really about making frameworks move to 
these build time closed-world assumption universe.

[00:14:41] JM: Framework. Explain in more detail what the problems with frameworks are. I’m 

thinking Spring framework, for example. Spring framework, if I want to run a Spring framework 
application on top of Kubernetes, are there some kind of issues with doing that today?

[00:15:01] EB: Yes. Well, it depends how much memory you’re ready to pay for. What’s the 

density of the application you want to have on your, say, cloud provider or Kubernetes 
deployment or whatever. Because what a framework does – By the way, that’s not unique to 

Spring. App servers have the same models. Hibernate, which is the object relational mapper 
also use the same model

© 2019 Software Engineering Daily 6



SED 953 Transcript

When you think about it, what a framework does, it will pass some configuration file. It has to 
read on XML file or some other formats to read what you ask it to do. Then it does what I 

described, this notion of class path scanning to the metadata, the annotations. That’s what they 
call in Java around your code. This class is actually a class to be persisted. I need to be aware 

of that. 

Then for those classes, these frameworks will want to do reflection to be able to dynamically 
invoke those methods. For example, you will want to inject an object into another object and this 

will be done dynamically. You do that. Then you build your internal model, which is the runtime 
model. In the case of object relational mapper, they would be generating the SQL queries 

necessary. Finally, the framework starts. 

All of that work, except the very last part of finally the framework is ready to answer your 
request. When you think about it in a closed-world assumption, you can move them from startup 

time, which is what the entire Java ecosystem had been focused on and to now and you can 
shift that to build time and not have to do that at all at runtime. You’re faster and you consume 

way less memory because the amount of code that is actually reading the configuration file and 
doing the reflection and preparing the framework to be ready and optimized is actually pretty 

massive. We’re talking about a lot of classes that don’t have to be loaded at runtime, which 
means smaller memory usage.

[SPONSOR MESSAGE]

[00:17:11] JM: This episode of Software Engineering Daily is sponsored by Datadog. Datadog 

integrates seamlessly with more than 200 technologies, including Kubernetes and Docker, so 
you can monitor your entire container cluster in one place. Datadog’s new live container view 

provides insights into your container’s health, resource consumption and deployment in real-
time. Filter to a specific Docker image or drill down by Kubernetes service to get fine-grained 

visibility into your container infrastructure. Start monitoring your container workload today with a 
14-day free trial and Datadog will send you a free t-shirt. Go to softwareengineeringdaily.com/

datadog to try it out. That’s softwareengineeringdaily.com/datadog to try it out and get a free t-
shirt. 

© 2019 Software Engineering Daily 7



SED 953 Transcript

Thank you, Datadog.

[INTERVIEW CONTINUED]

[00:18:04] JM: We covered this in the previous GraalVM episode I believe, but just in case 
people have forgotten that, explain in a little more detail why is the memory footprint going to be 

lower? Use the Spring framework example. Talk about why this situation that you’re describing 
with all these configuration and reflection stuff being in-memory, why is this so problematic and 

how does GraalVM reduce that memory footprint?

[00:18:34] GS: Maybe let’s take an example. We made a few modifications to hibernate 
validator to fit into Quarkus and how we wanted to build the Quarkus framework.

[00:18:50] JM: Hibernate validator, that’s like an ORM validation system?

[00:18:55] GS: Yes. It’s more of an object validation system. The idea is you put annotations on 

your object, on your beans and you say, “Okay. This property must not be [inaudible 00:19:08]. 
This property must be a valid SKU or whatever.” You add your annotations on your classes and 

the other task is to check that the instance validates the constraints you put on your object. 

When we initialize hibernate validator, we have to gather all these metadata. We have to check 
for the annotations. We have to check for the classes. We have to initialize the constant 

validator and so on. This takes a lot of time. The idea was to move all these to build time. When 
you compile your application, we are gathering this information and we are initializing a number 

of object. 

The nice thing about that is that a large part of the hibernate validator code is designed to 
gather this information and build the meta model. If you have built the meta model before, if you 

have built it at build time, then all these classes can just be removed from the image, because 
you won’t need to use them. 

© 2019 Software Engineering Daily 8



SED 953 Transcript

In the end, you end up with far less classes in your image and you end up with less memory 

consumption in the meta space, because you don’t have to have all these classes initialized. 
This is for one library, but imaging that we do that for all the libraries of the framework, you end 

up with all these typically – Emmanuel gave the example of the XML file. So if you take 
[inaudible 00:21:11] or our object [inaudible 00:21:14] mapper, we have it passing an XML file. 

For this you need [inaudible 00:21:21]. You need [inaudible 00:21:23]. You need [inaudible 
00:21:25] and this is a massive amount of potential metadata that you will keep during all the life 

of your application. 

When you move that parsing at [inaudible 00:21:36] time, and you can do that because you are 
in a closed-world assumption. You end up with all these classes gone from the native image. So 

you have far less memory consumed by all these classes. This is one part of the gain we have 
with GraalVM, and it’s one of the interesting part of GraalVM. 

But keep in mind that some of the walk we do, we also do it in a JDK environment. We support 

GraalVM. I mean, we take the better of it, but we also have some gain a JDK environment. Even 
using Quarkus with standard JDK, we will see that we have far less memory consume because 

we moved quite a lot of work at build time. 

[00:22:29] EB: To us, the metrics that does matter – We’re assuming people are moving to 
many more deployment units. Let’s call it the microservice pattern just for simplification, but it 

could be functions. It could be not quite microservice universe. What’s important is the number 
of request per second, per megabyte you’re consuming, because the modern way to scale up 

your application is really to say, “I want to have an auto-scaler that will listen to some metrics 
and decide to deploy your second, or third, or fourth instance of my application dynamically and 

also scale down as necessary.” 

The fact that you can shave memory, especially the initially memory, for initialization of the 
frameworks that won’t be used anymore after is going to be very useful to really get a massive 

advantage in numbers of requests per second per megabyte of your application on a given 
platform.

© 2019 Software Engineering Daily 9



SED 953 Transcript

[00:23:31] JM: What do you need to build to make this a reality? This accelerated – Or I guess I 

should say lower memory footprint Java implementation?

[00:23:46] EB: Okay. Let’s do it in two parts. Let me give you a little bit of the limitations of 
running Java on GraalVM and probably I’ll let Guillaume explain what we call an extension, 

which is how Quarkus make a framework that we use, that we know, and shift its work as much 
as possible at build time.

GraalVM, as we said, is compiling everything at build time. It’s assuming all of the code of the 

application is available. If you do that, you cannot do arbitrary reflection or arbitrary scanning, 
because you will have eliminated a lot of code that the compiler believes you’re not using. If you 

can do reflection anywhere, it means any piece of code is potentially accessible. Therefore, you 
cannot do the [inaudible 00:24:29] elimination and all of the good and positive aspects of 

GraalVM are out the window.

You can still do reflection, and that’s a core aspect of the Java platform, but you have to list 
manually the classes you need to do reflection on. They have toolings to try and help them, but I 

won’t go too much into that detail, that amount of detail. It can be very tedious though to make 
sure you’ve exercised all of the areas where you need to do reflection, list those classes, all the 

fields and make that happen. 

Same for Java is – The Java ecosystem loves this notion of proxy, which are classes that are 
dynamically generated. Again, you need to list them manually to provide the information to 

GraalVM. With the code that you have plus the list of reflections you want to do on specific 
classes, then GraalVM will go and compile your whole application. 

That’s all good when you do a Hello World or a very pure JDK-centric application. But when you 

start using frameworks like Spring or the whole Java ecosystem, every framework using 
annotations essentially, you will have to give to that framework – That framework will need to a 

reflection. You as a user will have to list, give that information to the framework, and that’s a lot 
of work. That’s somewhat impractical really. Then comes Quarkus.

© 2019 Software Engineering Daily 10



SED 953 Transcript

[00:25:58] GS: The idea with our extension system is that for each library for which we need 

some GraalVM configuration, something like that, the extension will take care of that for you. 
For instance, in the case of – I don’t know, hibernate validator, let’s take this example again. 

Each bin you will validate, you will need reflection on that. You don’t want to write GraalVM 
configuration file for that. So we do that for you. That one part of the extension system –

 
[00:26:33] EB: The reason we can do that is that each framework semantically knows which 

class it needs to apply reflection on, because you as a user have naturally put some sort of 
metadata. In the case of hibernate validator, it’s the constraints. You say, “Hey! I want that string 

to always be an email.” We detect the ad email annotation. Therefore we know we will do 
reflection on that. 

The frameworks have the semantic knowledge of which class you as a user want to do a 

reflection on. You as a user don’t have to provide that. It’s just a framework that will interact with 
the extension and then provide that information to GraalVM.

[00:27:11] GS: Yeah. Another part of our extension framework is that at build time we will scan 

the annotations used by the framework. For instance, if you have your [inaudible 00:27:24], so 
your Rest services, you will have annotations on these methods. So by scanning the 

annotations at build time, we can get the list of all the method we will use as [inaudible 
00:27:40]. We can generate code to initialize things eagerly at build time. That’s really what we 

do in extensions.

One big part is let’s do whatever we can do at build time in the extension framework and then 
we will generate code that will be executed later. In some cases, with UI extension, what you do 

is I scan my annotations. I generate some byte code. When I would start my application, I won’t 
have to scan the annotations again. I will just execute the byte code and it’s far faster and you 

don’t need to scan all your class paths at runtime. 

The second part is without this knowledge, we can simplify the configuration of GraalVM 
because, yeah, we know that these [inaudible 00:28:37] will serialize this object to [inaudible 

00:28:41]. So we know we will use reflection and we will declare it to GraalVM and say, “Oh! We 
will [inaudible 00:28:50] this object for reflection, because it will be serialized [inaudible 

© 2019 Software Engineering Daily 11



SED 953 Transcript

00:28:57] at some point.” I think there are two components really in our extension system. Move 

whatever we can at build time and simplify the configuration with GraalVM if you are using 
GraalVM.

[00:29:12] EB: Yeah. If you look at it from a user, the goal of Quarkus is to take the 

programming model they know, whether it’d be the Java ecosystem – I’m sorry. We’re pushing a 
lot of acronyms here unfamiliar with Java. [inaudible 00:29:33] way of doing things. Whether it’s 

be the Spring annotations. Whether it’s be the way you persist entities. We make that run as 
they’re used to in a “normal” Java ecosystem, but we do the hard work of making sure GraalVM 

has the right set of information to properly compile the application.

[00:29:56] JM: Quarkus makes my application run faster not just because of GraalVM but 
because of the – Is it called the hotspot compiler? Is that what it is?

[00:30:04] EB: The hot spot compiler is what is inside the normal JVM. Hot spot is really the 

just-in-time compiler I was describing. Yeah, that’s a bit of a simplification, but that’s it. GraalVM 
comes with essentially an alternative version of that, except instead of using a just-in-time 

compiler also compiling your code while you run it, it actually does it at real-time. That’s some 
more clarification.

The other clarification is a code that is running on GraalVM might be actually a bit slower than a 

code running on hot spot, because it doesn’t necessarily have the just-in-time capability to 
adjust itself as it sees how the code is actually used. Technically, your request per second, the 

pure request per second will be lower on GraalVM than it is on the Java hot spot. But you can 
definitely compensate that by the fact that you are consuming way less memory. Assuming your 

application is stateless, then deploying a second or a third instance will more than compensate 
on that. 

What Quarkus offers is really a way for you to decide whether you want to run in the normal 

JVM universe or in the ahead of time GraalVM universe, and there are pros and cons for those. 
If you’re very focused about application density, then the GraalVM aspect will be interesting. On 

the other hand, if your application is very memory heavy or you’re very focused on the 

© 2019 Software Engineering Daily 12



SED 953 Transcript

maximum throughput for one instance, then hot spot will definitely be a better case for you. 

Quarkus abstracts that. 

The other advantage that Quarkus has is essentially for the same amount of memory that in 
other cloud native Java-based platform would use. We run more request per second, because 

having less of these initial memory overhead, we literally have more memory for the application 
itself and for each of the requests and each of the request per second. Our middleware has 

been optimized to not have any bottleneck or as less bottleneck as possible for many years 
now. We’re very confident about that kind of limitation.

[00:32:24] JM: I understand at this point that Quarkus is going to reduce my memory footprint. 

Is it also going to make my programs run faster?

[00:32:34] GS: The idea is really about improving the startup time. This is the first component of 
it.

[00:32:42] JM: That’s true.

[00:32:42] GS: We want your application to start fast. In a microservice world, you will probably 

want to start multiple instances of your applications and maybe you will have autoscaling. If you 
have autoscaling, you’ll want new instances to start almost instantly. Even more important when 

you are considering serverless and functions where you potentially scale to zero. You might not 
have an instance of your application and then you want to start on ten of them at the same time 

for a certain load. You will need your application to start instantly.

The idea of moving everything to build time is to really to improve startup time. If you take the 
exact same component configured in the exact same way, they won’t be faster on Quarkus, 

because they have the same components configured in the exact same way. What will be 
different is that it will start far faster. Of course, we try to optimize Quarkus to run faster, but it’s 

not magic. What is a big magic is how we start faster because of the Quarkus infrastructure and 
how it is designed.

© 2019 Software Engineering Daily 13



SED 953 Transcript

[00:34:11] EB: But I would argue you will develop faster, which is an interesting aspect. I’m sure 

CTOs look at their bills and the headcounts is a factor. The reason you will develop faster is that 
be c Quarkus starts much faster, as we’ve been describing earlier in this podcast, we’ve been 

able to implement something that we call live coding and precisely live reload where you start 
Quarkus in dev mode and then you start typing code in your ID, whatever that is, VS Code, or 

IntelliJ, or Eclipse. Then you go back to your browser, you refresh to see the updated page of 
the updated resting point and you see it right away. 

It looks like, okay, no big deal for somebody doing a PHP, for example, because that’s all 

they’ve been running their program and their development forever. For a Java developer, the 
usual lifecycle is I’m coding. I’m deploying the application. So I’m packaging the application. I’m 

deploying the application, including – Then I’m including starting it, really. Then I can go and 
test. There is a bit of not enough time for a coffee probably, but quite a bit of a lag time. 

With these live reloads, you really give some extremely short feedback loop between the 

change you’re making and the results you’re having. It sounds tiny, but it makes so much of a 
difference – We call it developer joy in marketing parley for us, but it is really very good to see 

the mistakes you make. Go fix it and come back. 

The other aspect is the test suite. We’ve seen more classic Java applications, backend 
application. I’m speaking having pretty long test suite because of the slowness of the framework 

to start and preparing all of the metadata we’ve been describing. With Quarkus, this is 
massively optimized so you will see drastic benefit in the time it takes for test suites, for your 

test suite to run.

These are I think also key important aspect, not just about the pure cloud bill that you will get, 
but also how many people will be, or rather let’s say the same team. How many more 

microservices they will be able to handle just by having a faster feedback loop and get the job 
done faster.

[00:36:41] JM: How do I begin to adapt Quarkus?

© 2019 Software Engineering Daily 14



SED 953 Transcript

[00:36:48] EB: You can come to Quarkus.io, and then we have a way to generate your first 

project. It’s called code.quarkus.io where you see all of the technologies we already support. 
What is important is you – I always joke and say that you already have 5 years of experience in 

Quarkus if you are in the Java ecosystem, because when you think about it, the application that 
runs, the piece of code that is run at runtime is not Quarkus code. This is the Rest server, in our 

case, [inaudible 00:37:22] relational map, object relational mapper, in our case, hibernate ORM. 
These match your technologies and also APIs you already know. 

To get started with Quarkus, just the fact that you already know the Java backend ecosystem 

makes you – You know already 90% of what you really need. For people that are a bit less 
familiar with the Java ecosystem and more familiar with the pure Spring ecosystem, we have 

what we call a Spring compatibility API layer which lets you have your Spring annotations and 
they will be transformed at build time and run on Quarkus at runtime.

[SPONSOR MESSAGE]

[00:38:14] JM: If you are a SaaS or software vendor looking to modernize your application 

distribution to gain more enterprise adoption, checkout replicated.com. Replicated provides 
tools to deliver your Kubernetes-based application to enterprise customers as a modern on-

prem private instance. That means your customers will be able to install and update your 
application just about anywhere. 

Bare metal servers in a cloud VPC, GovCloud and their own Kubernetes cluster, vSphere. This 

is a secure way the your customers can use your application without ever having to send data 
outside of their control. Instead of your customer sending their data to you, you send your 

application to your customer.

Now, this might sound difficult and maybe you’re not used to it because you're a SaaS vendor. 
You’re a software vendor, but Replicated promises that recent advancements from tools like 

Kubernetes make it far easier than before, and the Replicated tools can help vendors 
operationalize and scale this process.

© 2019 Software Engineering Daily 15



SED 953 Transcript

The Replicated tools are already trusted by noteworthy customers like HashiCorp, CircleCI, 

Sneak and many others. As a result, over 45 of the Fortune 100 already have an application 
deployed via Replicated in their infrastructure. That’s a strong sign of adaption. 

Go to replicated.com for a 30-day trial of the full Replicated platform. You can also listen to an 

interview with Grant Miller, the CEO of Replicated, that we did a while ago. 

Thank you to Replicated for being a sponsor of Software Engineering Daily, and you can check 
it out for yourself at replicated.com and get a free 30-day trial.

[INTERVIEW CONTINUED]

[00:40:21] JM: Let’s take a step back. Your perspective is that Quarkus is designed for a world 

of new application structures. Could we talk a little bit more about how you see application 
development changing and why Quarkus is a worthwhile project in that environment?

[00:40:39] EB: I got two theories. The first one is people have les to work on a given application 

that the pressure to get the business innovation out as fast as possible is higher than ever and 
the competitiveness here has just increased. The time you take to write your application, and it 

can be as long as knowing this new framework to how long it takes to deploy and run your test 
suite and so on is definitely shrinking. 

You need to get down. That’s the key important aspect. At anything you make somewhat simpler 

for the developer is going to be a huge gain down the road. People don’t have time to explore 
the technology and look at it for days and days. They probably do a sneak peek of one hour if 

they like it. Another half a day if they like it. They’ll start to give it a try on some of your real 
projects. That’s one aspect. 

The other aspect to me is because we’re in a world of automation and the notion of deployment, 

that used to be a fairly complex process where everyone was sweating and making sure things 
were tripled checked before you were deploying in somewhat fading away. People are 

embracing those, what I call dynamic orchestration platforms. I do have Kubernetes in mind, but 
you could think of the cloud provider as another one of those. 

© 2019 Software Engineering Daily 16



SED 953 Transcript

My theory that because you have that, you can do microservices, meaning you can split your 
application into smaller bits because you can deploy them without too much cost, because all of 

the maintenance and making sure the app stays up is somewhat handled by the platform. 
Instead of neutralizing this cost into one monolith, you can split your stuff into microservices. 

The reason you do microservices, to me, because it’s still costly. Each microservice is simpler, 

but then the communication between microservices makes the entire system more complex. 
Why do we pay that cost? To me, we do pay that cost to be more agile and really address the 

business needs. You will probably do less features from a throughput point of view, but you’ll be 
able to deliver the right feature much faster. 

If at some point in one area of your application you decide that the technologies you’ve chosen 

is definitely not the right one, you’ll be able to scrap entirely the code and even potentially the 
database system underneath and, for example, decide to go from a relational database to an in-

memory database and rewrite entirely the code. That is manageable, because it’s very well-
known piece of your application and it’s not like a big, gigantic things with lots of interaction with 

other areas. 

[00:43:28] JM: How did you guys get involved in this project? What were you doing beforehand 
and what caused you to start working on Quarkus?

[00:43:37] EB: I’ll start because I was a tiny bit earlier than Guillaume into that. I’m the 

cofounder of Quarkus and we decided to go for Quarkus from – In some ways, we’ve started 
Quarkus many, many years ago, as I was describing the need to optimize our middleware into 

much more memory-constrained environment that’s a dynamic orchestration platform we’re 
essentially offering to the world. 

We’ve been optimizing our frameworks. As I was saying, interacting with our JDK team to try 

and find incremental improvements in that area. When we saw GraalVM, we saw the potential 
and we saw that because we were somewhat knowledgeable with enough piece of the 

middleware ecosystem, we could try and move that ecosystem from startup time to build time. 

© 2019 Software Engineering Daily 17



SED 953 Transcript

We did something a big weird for Red Hat. Red Hat usually is open from the get go and we just 

put it out there on GitHub or whatever and then people try. 

In this case, we started with in somewhat of a secret, like a stealth mode even within the 
company and we got a lot of pushback for that, because that was definitely not the usual way of 

doing things. But we started with a very small team and said, “Okay. Let’s take those two or 
three or four technologies and let’s try and make sure these build time stuff works and that we 

can really shift the Java ecosystem to these new universe.” We did that and we iterated three 
months after three months by increasing slowly the team size and then bringing all the Red Hat 

middleware teams onboard.

[00:45:17] GS: Yeah. That’s when I joined. I’m the Hibernate validator project lead and I joined 
the Quarkus team to improve the integration of Hibernate validator and also make some 

changes in Hibernate validator to be more integrated into the Quarkus way. That’s how I joined, 
and I started working on a lot of [inaudible 00:45:44] fixing bugs, writing documentation and 

whatever. That’s how I got involved in the project.

[00:45:54] EB: Just to take a step back. On Red Hat middleware, I’m the chief architect for 
data. I’m usually around the data related projects. So the persistent framework, that data grid, 

which is a distributed key value store. Change data capture. There is a project called Debezium 
and so on. 

 
But when saw that potential into shifting the Java ecosystem, it was sort of all hands on deck as 

far as let’s give it a try and let’s make sure everybody in the organization see it as with the 
potential it has, and it required to break the silos we tend to have within organization and say, 

“Okay. Let’s take the key people across areas and do a concerted effort.” Because not only 
does it make user Java application much smaller in memory usage and so on, but it’s also going 

to be a very key aspect of Red Hat middleware, which is primarily written in Java. It’s a big win 
for us as Red Hat offering those middleware as services, just like cloud providers, but also it’s 

kind of for free that actual end user can also write the application with the same technology.

[00:47:06] JM: What’s the hardest engineering problem that you’re working on within the 
Quarkus project right now?

© 2019 Software Engineering Daily 18



SED 953 Transcript

[00:47:12] EB: By the way, the hardest problem is not engineering. It’s making the right choice 
of where we do invest. But back to your question – Guillaume, do you want to discuss the whole 

reactive rework that we’re doing maybe? 

[00:47:25] GS: Yeah. Right now we are working on totally new HTTP layer based fully on vertex 
and [inaudible 00:47:35]. At the beginning of Quarkus, we integrated a component called 

[inaudible 00:47:41], which is an implementation of [inaudible 00:47:43] and it was basis for all 
our HTTP layer. The issue with that is that we have – In Quarkus, we have integrated imperative 

way of coding and also the reactive way of coding. Having both in parallel and having two 
different implementation of things, you couldn’t share resources, and that’s something we are 

working on in Quarkus. Trying to use as less resources as possible. 

The idea of this HTTP layer rewrite is to put everything on vertex and base everything on vertex 
and have only one [inaudible 00:48:34] dealing with everything. It’s also an improvement in CPU 

usage. It lowers the number of context switches we have. It’s really something that we wanted 
to do for quite a longtime. The thing is that it’s really – While it’s a very low-level layer. So when 

you change that entirely, it comes with a lot of challenges. You do that while a lot of other people 
are working on those part of the code. It’s not an easy thing and you also have to co-design 

some key part of the code. While working on this new HTTP layer, we also have to rework all 
our security layer. It’s really a big engineering challenge and also a big organizational challenge 

because, yeah, we have to make progress while people are working on very low-level layer.

Yeah, that’s what keeps us busy right now. We have released the first step of this journey. We 
have a few [inaudible 00:49:44] coming with improvement on top of that. Yeah, the idea is really 

to be able to unify everything by using a vertex and having reactive at the core of Quarkus. 

[00:50:06] EB: The reason we want just essentially one pipeline to process all requests whether 
you end up doing the blocking way from a problematic point of view or the non-blocking way is 

because, again, it’s about resources. It’s about memory. Every extra class we bring to the 
Quarkus platform to do something means a bit more memory use that we could avoid and that 

we could be better used to serve the request per second the user is looking after. 

© 2019 Software Engineering Daily 19



SED 953 Transcript

Remember, microservices. When splitting your application into many units of deployments 

means every extra bit you save counts. That’s an important aspect for us to try and say, “Let’s 
not try and have two framework to do the same thing in slightly different way, but try to unify 

that.” It’s not for the engineering beauty of things. 

The reactive aspect, we wanted reactive to be at the core, and it’s again a resource conception 
aspect. With a non-blocking model, you can definitely save from a memory usage point of view 

and in those instances, you do require to serve your request. It’s heavily used in heavy data 
ingestion needs. Any IoT related platform would definitely want to have a very low-level, a very 

low consuming end point. That’s an important aspect. But reactive, it comes with its challenges 
from a programmatic point of view. A user will be able to stay blocking if it’s just easier for him or 

her and if they just are okay to pay the extra resource cost.

[00:51:41] JM: Have you all seen any other cool projects within the GraalVM ecosystem that 
stand out?

[00:51:47] EB: For us, fundamentally. This is a new era for Java. There were some pretty heavy 

eras, but not a lot of them in the Java ecosystem, because it’s fundamentally a fairly stable 
ecosystem. But we’ve seen quite a few turn at some point that really changed the landscape 

into how you write an application. Annotations was one. 

We see these shifting of the frameworks at real-time. Probably the biggest new era that at least 
the Java backend as ever seen. Whether it’d be Quarkus in the end or something else, of 

course we do believe Quarkus will be the one, but this will be a change forever. There is 
Quarkus. Another one is Micronaut, which came to the problem slightly before, but also before 

GraalVM was something. They also try and shift as much as possible at real-time. 

What they didn’t get from the get go and don’t have is really literally a bit of a dialogue between 
a framework. Well, the extension model that we described is really a dialogue between the 

framework that people use, whether it’d be the dependency injection framework or the rest end 
point framework or whatever, and GraalVM to really provide it the right information. Also, try and 

have – We didn’t go too much into that details, but the notion of dead code elimination is very 

© 2019 Software Engineering Daily 20



SED 953 Transcript

sensitive. If at some point the compiler is not quite sure whether your code is used or not, or 

course you will be conservative and keep all of the code. 

But because you’re at the application level, you know for example that this application will never 
use, say, a second level cache. You can help the dead code elimination by simplifying a little bit 

the code and making sure second level cache is not only disabled, but entirely removed from 
the codebase and then you save, again, a little bit more memory.

Yeah, Micronaut is also a cool framework in that area. There is one whose names escapes me, 

which is around writing common line interface, tools essentially, but in Java, which was very 
prohibitive in the past because starting the JVM was – Well, first of all, you had to install the 

JVM, plus your tool, and then starting the JVM is like a two-second proposition, let’s say, plus 
the memory usage. If you want to write a very simple and very reactive common line tool, that 

was just prohibitive. There are some frameworks that are built around GraalVM to improve that 
ecosystem. 

Is it [inaudible 00:54:27] or something like that, Guillaume? Do you remember?

[00:54:30] GS: [inaudible 00:54:30].

[00:54:31] EB: [inaudible 00:54:31]. There you go. I was close. Do you see any other that I 

might have missed?

[00:54:36] GS: I think these are the two most interesting projects apart from Quarkus.

[00:54:43] EB: By the way, I think on the GraalVM – We’re less verse in the GraalVM polyglot 
side, but I think people see a lot of interesting things with our support for GraalVM. It’s not my 

thing really, but I believe people really appreciate the way GraalVM runs are and they can even 
mix and match a bit of Ark doing some work, extracting information and then using it in another 

part of their application, which is in plain Java. That’s one aspect. 

© 2019 Software Engineering Daily 21



SED 953 Transcript

When we say polyglot in GraalVM, it’s not only that it runs more than one type of language, but 

it runs all of them in the same piece of code and you can literally interact between one language 
piece and another language piece without interrupt cost.

[00:55:32] JM: All right, last question. Imagine it is 5 years into the future. How will Quarkus 

have changed my life?

[00:55:40] EB: That’s a tough one. 

[00:55:43] JM: Even if it’s in imperceptible ways.

[00:55:46] EB: I’m trying to think five years in the future. Overwhelmingly, we’ve seen like 
awesome feedback on the Kubernetes and people are absolutely interested into learning about 

that. We knew we were on to something, but you never know how much that is. The memory 
consumption was absolutely massive. Much bigger than we even anticipated, at least at my 

level. I even had [inaudible 00:56:11] come to me and say, “You know, I love your stuff. I think I’ll 
talk to my dev team too so that they go and adapt it because I’m sick of those Java processes 

taking so much memory and so much time to start.” 

If anything, Quarkus would have – Some people have predicted the death of Java for quite for a 
while, but I think it will definitely keep the next prediction for quite a few years with this new 

evolution. To me, the other aspect is if we keep building the ecosystem properly and keep 
having these live reload model that will change the way people, new generation come at Java 

and how they write application will probably vastly change instead of being very, for example, 
test-first centric, because that was the smallest unit of work to really deploy part of your 

application and make it run. It would probably be much more live reload centric where you code, 
you see the result right away so you can even adjust the UI while you also add a new field in 

your database and your object. That is to me a game changer. 

There was actually a framework called play framework, the V1. That had really a very good user 
experience and we’ve been shamelessly stealing all of the good ideas they had at the time, but 

also improve on the memory usage. What we knew is that you can give people a massive 
memory improvement, but if development experience is really odd or crap, it would just not 

© 2019 Software Engineering Daily 22



SED 953 Transcript

adapt it. They don’t have the time. We also needed these awesome user experience as well as 

the memory advantage. 

I don’t know. Let me do a very stupid prediction. Because we save so much money on the cloud 
bill, maybe there’ll be more people in your guys’ team and you can achieve more. I don’t think 

that one will be true, because the money will be reused elsewhere, I’m sure. But that would be a 
good one. 

[00:58:18] JM: No! I hear these cloud providers pass on their savings to the customer.

[00:58:22] EB: Oh, yeah. That must be right.

[00:58:25] JM: All right, guys. Well, Guillaume, anything to add?

[00:58:29] GS: Well, yeah. I want to work something about our community. We have a very 

open community at Quarkus, a very inclusive one. If you are interested in starting open source, 
working on a new project, be creative with new ideas. You will be very welcome. We have more 

than 150 contributors now and it’s growing very fast. If you feel like learning, you’ll be welcome. 

[00:59:04] JM: All right, guys. Well, thanks for coming on Software Engineering Daily. It’s been 
fun talking to you.

[00:59:07] EB: Thank you very much. Yeah, it was a good conversation. 

[END OF INTERVIEW]

[00:59:20] JM: If you want to extract value from your data, it can be difficult especially for 

nontechnical, non-analyst users. As software builders, you have this unique opportunity to 
unlock the value of your data to users through your product or your service. 

Jaspersoft offers embeddable reports, dashboards and data visualizations that developers love. 

Give your users intuitive access to data in the ideal place for them to take action within your 
application. To check out a sample application with embedded analytics, go to 

© 2019 Software Engineering Daily 23



SED 953 Transcript

softwareengineeringdaily.com/jaspersoft. You can find out how easy it is to embed reporting and 

analytics into your application. Jaspersoft is great for admin dashboards or for helping your 
customers make data-driven decisions within your product, because it's not just your company 

that wants analytics. It's also your customers. 

In an upcoming episode of Software Engineering Daily, we will talk to TIBCO about visualizing 
data inside apps based on modern frontend libraries like React, Angular, and VueJS. In the 

meantime, check out Jaspersoft for yourself at softwareengineering.com/jaspersoft. 

Thanks to TIBCO for being a sponsor of Software Engineering Daily.

[END]

© 2019 Software Engineering Daily 24


