
SED 962 Transcript

EPISODE 962

[INTRODUCTION]

[00:00:00] JM: Java has been popular since the 90s when it started to be used a programming

language for enterprises. Today, Java is still widely deployed, but the infrastructure environment
is dramatically different. Java is often deployed to containers in the cloud. If those containers

can share resources, then those containers can share the same underlying Java infrastructure.
Java 13 is the most recent public release of Java. The new features in Java 13 reflect the

changing demands of modern application developers.

Georges Saab is an engineer with Oracle who has been working on Java for more than a
decade. He joins the show to discuss how Java development patterns are changing and how

the language is evolving to accommodate those changes, including discussions of garbage
collection, dynamic application, class data sharing and other technical subjects.

I want to announce, we’re hiring a content writer. We’re also hiring an operations lead. Both of

these are part-time positions working closely with myself and Erica. If you are somebody
interested in writing content about software engineer or if you’re interested in helping us with

operations, both of these roles are fairly technical. You will learn more about software
engineering. You do not need to be a software engineer. You do not need to have a degree in

anything related to software engineer, but we would love to talk to people who are interested in
the podcast, who like the podcast. Send me an email, jeff@softwareengineeringdaily.com.

Also, we’re going to be at AWS Reinvent Las Vegas this week, and we’re planning a meet-up at

Reinvent. That meet-up is going to be Wednesday, December 4th, which is in contrast to the
date we previously announced, and you can see the announcement in the show notes for this

episode. You can see the link and you can grab an RSVP. I would love to see you there.

[SPONSOR MESSAGE]

[00:02:09] JM: Today’s sponsor is Datadog, a scalable monitoring and analytics platform that
unifies metrics, logs, traces and more. Use Datadog’s advanced features to monitor and

© 2019 Software Engineering Daily 1

mailto:jeff@softwareengineeringdaily.com

SED 962 Transcript

manage SLO performance in real-time. Visualize all your SLOs in one place. Easily search,

fi lter and sort SLOs, and share key information with detailed intuitive dashboards, plus Datadog
automatically calculates and displays your error budget so that you can see your progress at a

glance.

Sign up for a free 14-day trial and Datadog will send you a complementary t-shirt. Go to
softwareengineeringdaily.com/Datadog to sign up, try out Datadog and get a wonderful t-shirt.

Your SLOs will be even more on-track when you’re in your Datadog t-shirt. Actually, I can’t
guarantee that, but I recommend going to softwareengineeringdaily.com/datadog to get the free

trial and a t-shirt.

[INTERVIEW]

[00:03:09] JM: Georges Saab, welcome to Software Engineering Daily.

[00:03:11] GS: Thanks, Jeff. It’s great to be here.

[00:03:12] JM: Today we’re talking about Java, and specifically Java 13, and I want to start with
some contextual discussion. So we have cloud infrastructure these days, and cloud

infrastructures had a lot of downstream effects on software development. How has the cloud
impacted programming language choices from your point of view?

[00:03:33] GS: Well, I think that one of the things that we see whenever there’s kind of a new

environment or a situation where people want to use a programming language, it can drive the
kind of requirements that you have. So when we look at what people are doing in the cloud, in

many ways, the cloud itself is not that different, but a lot of the ways that people use the cloud
tend to make different things important.

As an example, the way that people want to use containers as a way of deploying things to the

cloud means that we need to make sure that our runtime and language support running in a
container really well. Sometimes that can be changes to language itself. More often or usually

the first thing that you tend to see is that it will lead to different things in the implementation.

© 2019 Software Engineering Daily 2

SED 962 Transcript

Just as an example, the way that Docker works with Linux in order to let a runtime know what

resources are available to it is slightly different from the sort of traditional way that that was
done if you were just running Linux directly on your desktop. So that’s the kind of thing where

the implementation of runtime needs to be aware of these changes and make sure that it’s
doing things in the right way.

[00:04:46] JM: You mentioned containerization there. Can you drill in to that a little bit further?

How has the popularity of containerization affected the usage of programming languages?
Maybe if you could address Java specifically and how containerization has affected Java.

[00:05:00] GS: Well, just as an example, the way that people tend to use Java a decade ago

was they’ll get a big server and then they would run an application server on that, and typically
the assumption was that your application server had full control of the server you’re running on

and it was probably the only thing running there.

So that would tend to lead the runtime to want to be fairly aggressive with its use of the
resources on the underlying harbor and operating system. Basically, making the assumption

that nothing else is there. It didn’t need to worry as much about releasing memory quickly to the
operating system, or taking advantage of all of the course that were available on the hardware

or other things like that.

Whereas running in Docker containers, basically, if you can continued to use the same Linux
system calls, you would not be aware of the fact that you’re not actually sharing that underlying

hardware with a bunch of other containers that are out there. So you need to be a much better
citizen and not take more resources than you’re currently making use of. The way that that

translates is to different underlying system calls in order to sort of ask what’s available to you.

[00:06:13] JM: I think what you’re describing is the noisy neighbor problem effectively, where in
a multi-tenant system, you have all the different tenants, all the different applications that are

running on a single host. They are competing for resources. There are ways that they could
share resources or make use of shared infrastructure.

© 2019 Software Engineering Daily 3

SED 962 Transcript

But if they’re not really aware of each other or if the host is not really trying to make use of

potential commonalities between those applications, then it’s just going to be a battle for
resources among these different applications. That can just create a different infrastructure

environment than perhaps a host with a single application running on it, or even a VM with a
single application running on it. Whereas today, you can now have like a VM with multiple

containers or a host with just a ton of containers.

[00:07:14] GS: Yeah, that’s certainly true, and it’s also sort of a question of the scale at which
that’s done or at what level in the architecture that’s done. So as an example with Java EE app

servers a decade ago, that problem still occurred, but it was occurring within the JVM itself.
Whereas with Docker containers and so on now, what people tend to be doing is having a

different level of isolation and having each one of those containers probably have a more sort of
single purpose and using the container technology in order to be able to kind of split things up

between different services.

[00:07:51] JM: You’ve worked on Java for almost a decade. How was the Java ecosystem
different when you started?

[00:07:58] GS: I’ve actually been working on Java since the mid-90s. I was on the Java team at

Sun in the very early days.

[00:08:06] JM: Okay. So more than two decades.

[00:08:08] GS: Yeah, it’s kind of crazy how long I am and actually many of the team members
are sort of long-term folks that have been working on Java for quite a while. I think to answer

your question specifically in the last decade is a real speed up and how quickly things are
happening and how quickly we need to be able to put new features and capabilities in people’s

hands.

So we basically took a look at this 10 years ago and said, “Hey! We want to make sure that
Java is poised to be able to delivery things to people more quickly.” The pace at which we

deliver new versions of Java 25 years ago was kind of appropriate for the way that people did
software development then. But more and more were seeing that people are picking up new

© 2019 Software Engineering Daily 4

SED 962 Transcript

technologies quickly. They’re adapting the style of programming and architecture that they’re

using and they want to see that the tools and languages that they’re using are able to keep pace
with that rate of change.

So a decade ago, we decided we were going to look at a sort of longer term effort to move to

having new releases that happened more frequently than the sort of two to three to four-year
pace that Java had been on traditionally. It took a little while to get that setup. It wasn’t

something that we could change overnight, but basically we were able to successfully move to
that model from the release of Java 9 a couple of years ago. Since then we’ve been keeping

pace of a new release with Java every six months.

[00:09:44] JM: So we’ll get into that increased release frequency and some more context
around that and as well as the specific improvements in Java 13. I want to continue this

discussion of the broader ecosystem. So if you’ve been tracking programming languages for the
last 20 years, you’ve seen the rise of JavaScript. You’ve seen the rise of Ruby on the backend.

You’ve seen some people using Go and perhaps Rust.

Java continues to truck-on, and there plenty of gigantic successful applications that use Java. Is
there a specific type of application that Java caters to today that Java is the best for, or is it just

something about the duration of the ecosystem, the maturity of the ecosystem? What is it
specifically about Java that makes certain applications a good fit for Java?

[00:10:46] GS: Yeah. It’s an interesting question and certainly something that I’ve looked at and

asked people in the ecosystem what their thoughts are on it. I think that in many ways, the fact
that Java exist in so many places and is just a really good and sold tool for many different kinds

of applications has led to this sort of virtuous circle where the fact that it’s good for so many
things means it’s great for people to invest in and learn about.

The fact that they have invested and learned about has meant that they’ve created just a

wonderful set of libraries and frameworks and other things that give people a lot of choice. It
means that employers have a lot of people to choose from and can find a lot of talent, and the

other way around that people who want to learn some technology that’s going to help them get
hired and become key for their employer, it’s a pretty good choice.

© 2019 Software Engineering Daily 5

SED 962 Transcript

So I think that when I look at the kinds of applications people are running, I think many people
that I speak with come me specifically through the area that they’re involved in. They come and

say, “Well, I’m working on server side applications on Java on traditional Java EE servers.” So
they’ll have one set of perspectives.

But I also get people who are coming and doing embedded Java, who are running Java on

small devices, or people who are working with Java card. There’s just a very, very wide range of
things out there. One thing that’s common is most of these people are very passionate about

their language choices and they all have suggestions of what we need to do to make Java
better.

Generally, one of the things that they tell me is that our dedication over the years to making sure

that the evolution that we’re doing in Java is not just haphazard, but is very thoughtful and
methodical and that while we’re doing evolution, we also take care to make sure that we’re

bringing everyone along and making sure that the upward compatibility story is really good is
something that’s been important to them.

They’ll say, “Hey! I have this application that I originally wrote for JDK 11, and I’ve ran the other

day on 13 and it’s running great, except a lot faster.” I think it’s actually really neat to see.

[SPONSOR MESSAGE]

[00:13:06] JM: If you are selling enterprise software, you want to be able to deliver that software
to every kind of customer. Some enterprises are hosted on-prem. Some enterprises are on

AWS. Some enterprises are on cloud providers that you’ve never heard of, and every cloud
provider works differently.

Gravity is a product for delivering software to any kind of potential environment or data center

that your customers want to run applications in. Think of Gravity as something you can use to
copy-paste entire production environments across clouds and data centers. Gravity is made by

Gravitational, and Gravity works with on-premise data centers and on different cloud providers.

© 2019 Software Engineering Daily 6

SED 962 Transcript

Gravity can get software to your biggest customers without the pain of developing individualized

deployment systems for every single customer. Gravity puts a bubble of consistency around
your application so that you can write it once and deploy it anywhere, and Gravity is open

source so you can look into the code and understand how it works.

You can also listen to the episode I recorded with Gravitational CEO, Ev Kontsevoy. Gravity is
built to solve the problem of software delivery. Gravity ensures compliance and lowers the cost

of development. You don’t have to write your code to support every platform. It is as easy as
copying and pasting your deployment each time.

Gravity is from Gravitational and it’s trusted by leading companies including MuleSoft and

Anaconda. Go to gravitational.com/sedaily to try Gravity Enterprise free for 60 days. Gravity
uses Kubernetes under the hood and the Gravitational team knows Kubernetes well. If you go to

gravitational.com/sedaily, you can sign up for a free consulting session about cross-cloud
Kubernetes security. This is in addition to the 60-day free Gravity enterprise trial.

If you feel like you need to get a better understanding of Kubernetes security, check out

gravitational.com/sedaily for this offer of a 30-minute free Kubernetes consultation along with a
60-day free Gravity Enterprise trial.

Gravity is a system of securely delivering your applications into any environment, and you can

try it free by going to gravitational.com/sedaily. Gravity Community Edition is also available on
GitHub and it’s free to play with. If you are curious about how Kubernetes will change software

deployments, I recommend checking out the Gravity repository, and thanks to Gravitational for
being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:16:07] JM: Programming language historically – In many cases, they age out. So I assume

there was a time when small talk was more widely used in industry. I know COBOL was widely
used. FORTRAN was widely used. I mean, these applications are still around, but the

programming language mindshare of those languages has decreased overtime, and that's just a
nature of technology.

© 2019 Software Engineering Daily 7

SED 962 Transcript

Java, I feel, is in the process of crossing the chasm from one age to another, and it seems like it
is doing so successfully. We’ve talked about the past architectural pressures for what you would

want out of your Java infrastructure and how that is sort of changed where you maybe want
smaller application components. You want to deploy them to containers, and that just creates

different desires out of maybe what you want out of a garbage collector or what you want out of
a framework. Maybe you see Spring needing to change. Going to Spring boot, and Spring boot

being an easier way to spin up some cheap and smaller or lighter weight boilerplate
applications.

So as we get into talking about kind of the incremental changes into Java 13, before we get into

the incremental changes, give me a long range view for where Java needs to go in order to
remain a durable widely used programming language.

[00:17:44] GS: Yeah. So I'd say that I agree with you in terms of there being sort of changes

that happened in the industry and it requiring attention from programming language developers
to make sure that we’re sort of doing the things that are going to help the language make the

transition and help the users of language make the transition to new styles of creating
applications and new architectures that you’d want to run.

For us, interestingly, move to the cloud has really taken a few things that have been themes that

we’ve thought about for quite a number of years and really brought them on very, very quickly.
For example, for many years, the focus in Java design and implementation was around thinking

about how to make very long-running workloads with very, very large datasets or very large
heaps run really, really well and really quickly.

For the cloud, we’re seeing actually two very interesting trends, and these are in some ways

somewhat a conflict or divergent, but in some ways not. So to be very concrete, many of the
things that we did years ago for long-running large memory kinds of workloads are actually still

around today for things like machine learning, right? When you have giant datasets that you
want to do reasoning over, it's important that you’d be able to represent that memory compactly,

that it’d be convenient to deal with and that you’d be able to write rules that are sort of looking at
that data and doing interesting analysis of it quickly.

© 2019 Software Engineering Daily 8

SED 962 Transcript

Many of the capabilities that Java has there are standing in a good stat in those kind of
environments. Now, having said that, there are more things we can and are doing. What we

tend to do is sort of look at it and understand how some of the underlying changes, for instance,
in hardware, make it so that the choices that were made when designing Java 25, 30 years ago

maybe need to be rethought a little bit. So we have a long-term project called Valhalla, which is
basically been about looking at how the Java runtime decides to lay out data in memory and

finding ways of representing it that are really relevant for today's datasets, for instance, in
machine learning, so that it can become even more compact and even more performant and

really take advantage of the developments and underlying hardware such as vectorization and
so on.

On the other hand, we have almost the other extreme where people want to adapt a more

microservice style of architecture where basically they want something that can come up
quickly, do something really fast and then just kind of go away. Of course, the techniques that

we’ve developed for optimizing code that has been running for many, many hours on a server
don't really come into play there, because this thing should have come up and done something

and disappeared before you even get to the point where that might happen.

So in order to support those kinds of things, we have other projects that are looking at improving
start-up time, doing things like ahead of time compilation. Having different styles of garbage

collection that actually work well, or in some cases get out of the way entirely for these kinds of
workloads.

[00:21:10] JM: And I think one way in which Java is updating itself to remain highly relevant is

this increased release frequency. So back when I was a software engineer, when I actually like
wrote applications instead of just podcasting about it, I think, literally, every company that I

worked at, which was a Java shop, which was 4 out of 5 companies that I worked at in the
duration of my career, maybe 5 out of 6. Each of them had like I think it was Java 7, Java 8 and

Java 9 or something, just like different tiers of the architecture that were on different versions of
Java, and just getting it updated was a huge struggle. Getting a uniform homogeneous Java, it

was always an issue in GitHub, just like an issue with an endless amount of comments, like,
“Okay. Update to Java 7.” It’s just really long. Nobody can ever finish it.

© 2019 Software Engineering Daily 9

SED 962 Transcript

I think part of the reason for that is because the release cycle was so long and there were so
much in each Java release. Am I painting an accurate picture of the state of enterprise Java and

the motivations for getting to a more frequent release cycle?

[00:22:28] GS: Yeah. I mean, I think you're absolutely right, that part of the problem with those
long release cycles is they would happen so infrequently that everyone knew it would be a big

effort, and so you would tend to sort of put it off and then it kind of snowballs. Then the same
thing is true for the contents of the releases, right? Because the releases were so long in

between, there is sort of a great desire. I mean, everyone who’s working on the JDK wants to
get good features in and make things better for developers.

But what ends up happening is you get lots and lots and lots of features baked in. So the

cumulative effect of that is that when that version comes out or when it came out, it would be a
very disruptive event. So people would race around trying to get their libraries updated and all of

their tools, like their IDEs and others and other things updated. That often was a process that
took quite a while.

In addition at that time, I would say even looking back towards the sort of early 2000's, much of

that work was being done in closed source and without many sort of early access builds if at all.
So it was the kind of thing where it was tough for people to know what to anticipate or to try it

out and give feedback, and it was tough for folks like my team working on the JDK to know what
kinds of issues people were running into. So that would all kind of snowball.

I’m really happy to say that where we are now, these new releases of Java we’re doing that are

coming somewhat more frequently, have a lot less in them. They’re intentionally very
incremental. So the idea there is that there's just not as much that's going to get in your way and

cause issues and cause delays and people being able to update, especially because we
continue with the practice that we’ve had of running hundreds of thousands of compatibility tests

and now having the sort of added transparency that we get of doing all of our development in
open source and providing usually about weekly early access builds of the next version that is

under development. It just really gives people a way to try things out that are works in progress

© 2019 Software Engineering Daily 10

SED 962 Transcript

and give us feedback so that we can make sure that they're just really, really sound and stable

and don’t cause issues when they come out.

I think one other thing that I’d sort of add there is that the module system that we added in JDK
9, really, one of the main intents for that was to make it easier both for us in making the JDK, but

also of people making libraries, whether they’re ones that they're distributing and encouraging
people whose across the industry or whether they’re even just kind of local in scope, a library

that you're using within your enterprise to be able to distinguish between the public API of your
library that you guarantee you're going to keep consistent and private implementation details,

which you need to have the flexibility to change and improve as you’re going forward.

So in the past, it was sometimes kind of unclear or difficult for people to understand when they
had inadvertently built in a dependency on something that they really shouldn't be dependent

on. So then when that thing changes, “Oh, wow! I have an update problem.” I think that as
people are starting to embrace the module system and use it, it just makes it much, much easier

for developers of those libraries to be able to evolve and then improve them and makes the
people who are using them much more resilient towards these kinds of changes.

[00:26:00] JM: Are there programming languages that are on like a continuous delivery or a

continuous release process, or is there something about the nature of programming languages
that makes this infeasible?

[00:26:12] GS: I'm not aware of any that update much more rapidly than we are doing. I think

that there are quite a number that at least have an ambition of doing releases on about a six-
month cadence. The reality is, I mean, we do it more frequently than that. We have releases that

are done in between. Basically, we have security stability and performance updates that we do
basically four times a year. So you combine that with the six-month feature releases, and that

means that we’re actually doing at least six updates a year.

Now, those are slightly different in terms of their nature. The main difference is that for
intermediate releases are ones that are done without any changes to the language and APIs.

But I think that it does end up at a point where you’re doing it basically just about every other
month.

© 2019 Software Engineering Daily 11

SED 962 Transcript

Then in terms of other languages, I have seen a number that are doing every six months. I
haven't really seen any doing more frequently than that. I think part of that is that people do

want stability. They want the ability to know that they’re writing code that's not going to
immediately be no good and have to require a lot of change, which is one of the reasons why

we care as much as we do about compatibility and making sure that the changes that we
introduced in these feature releases tend for the most part to be additive, right?

We add new capabilities to the language. We add new APIs. We’re very, very careful about

cases where we might want to renew something and tend to try to make sure that people are
aware of that far in advance. So we’ll do something like deprecation. I think we still have things

in the JDK that have been deprecated since like 1997, but we’ve actually tried to get better
about deprecating things, then marking them as deprecated for removal, which indicates when

they're going to go away, and then actually making good on that, because at some level you do
have to make sure that you are pruning the garden a little bit so that you can have new healthy

growth, right? We try to be careful of that.

There are also other interesting aspects that you get. So as an example, when you’re evolving
the language itself, if you're doing something like adding a new keyword, for example, you have

to be careful for collisions, right? If you all of a sudden add a new keyword that are maybe
existing code out there that actually uses that keyword as something else, like a method name,

or something.

One of the things that we tend to do there is try to look at some of the great resources that are
out there in terms of code and do analysis of, “If we did this change, what would happen?” We’ll

sort of test it against all the code on Maven central or something like that just to give you an
idea in order to make sure that we’re doing as little harm as possible in the efforts of trying to

improve things for people.

[00:29:02] JM: It can be kind of fun to go back through things that have been deprecated, like
things that were deprecated long ago and just get a little bit of an assessment of what didn't

work. I remember doing this a little bit in college, like reading comments about hot new ideas in
the programming language world, like particularly the Java world and it’s like, “Oh! Well –” and

© 2019 Software Engineering Daily 12

SED 962 Transcript

then it didn't work out. It’s just like products, like Google sunsets products all the time and it

turns out that programming languages do the same thing.

[00:29:33] GS: Yeah, that's true. I think some of that also comes with style, right? If you sort of
looked 15 years ago, like you want to go long on XML, and maybe today not so much. Although,

there are still tons of these.

[00:29:48] JM: Oh, yeah. Yeah, that's right. I mean, this podcast is going to be distributed over
RSS, which is XML.

[00:29:52] GS: There you go. Yeah. Yeah, I think this is true. There are definitely trends that

occur in programming language circles, and what we tried to do is not lurch too much back and
forth to the new hot thing, but really sort of try to understand where there are things that are

going to be long-term persistent that actually bring value to people and then take a step back
and go, “Okay. Well, what can we do to support that need?” Sometimes it's something like

putting in directly a particular library of support. Sometimes it's actually finding something
underlying in the JVM implementation that can support other people making those kinds of

libraries.

So we try to be pretty conscious of that. I think Java, when it originally came along, was
attractive for many people because it did have a large and extensive standard library. On the

other hand, we’ve always try to make sure that we weren't trying to make the library so broad
that it gave people in the ecosystem no room for innovation and producing things themselves,

which is a hard balance to achieve, right?

[SPONSOR MESSAGE]

[00:31:08] JM: Cruise is a San Francisco based company building a fully electric, self-driving
car service. Building self-driving cars is complex involving problems up and down the stack.

From hardware to software, from navigation to computer vision. We are at the beginning of the
self-driving car industry and Cruise is a leading company in the space.

© 2019 Software Engineering Daily 13

SED 962 Transcript

Join the team at Cruise by going to getcruise.com/careers. That’s G-E-T-C-R-U-I-S-E.com/

careers. Cruise is a place where you can build on your existing skills while developing new skills
and experiences that are pioneering the future of industry. There are opportunities for backend

engineers, frontend developers, machine learning programmers and many more positions.

At Cruise you will be surrounded by talented, driven engineers all while helping make cities
safer and cleaner. Apply to work at Cruise by going to getcruise.com/careers. That’s

getcruise.com/careers.

Thank you to Cruise for being a sponsor of Software Engineering Daily.

[INTERVIEW CONTINUED]

[00:32:28] JM: All right. Well, let's get into some of the newer features of Java 13, because I
think we’ve given a pretty broad perspective for Java and how the development process works.

Java 13 has a feature called dynamic application class data sharing, and I think that's a good
example of how performance can be improved of the Java runtime overtime. So in order to

explain what dynamic application class data sharing is, we first need to explain what application
class data sharing is. Can you explain what application class data sharing is?

[00:33:05] GS: Yeah. Basically, the idea is that the way that Java traditionally works is the Java

runtime startup. It goes and it loads your application and all of its dependencies. Sometimes it
does sort of just on time. It doesn’t necessarily go out and exhaustively do it right away. But

basically it will tend to do a fairly quick pass that’s doing class loading, starting to run, doing a
little bit of compilation, and then over time, monitoring the code paths that are hot and basically

doing better and better at code generation in order to make this run really, really quickly.

So that is one of the things that has meant that you have something that starts up in a
reasonable amount of time, but then over time the performance improves as you’re actually

running. Okay? Basically the next step then is to say, “Okay. Well, that's great, but I'm always
running this application in the same environment. Maybe there's something that I can do that

changes the balance a little bit so that I don't need to do all of that work on startup every single

© 2019 Software Engineering Daily 14

SED 962 Transcript

time, but instead I can start up a little bit more quickly and actually get to the warmed up state

more quickly.”

So the first step that we had there was class data sharing of the things that are in the JDK itself,
and then sort of the next level is doing that including your application as well, right? Basically

what this ends up doing is taking a bunch of the work once your code paths have gotten hot and
a bunch of optimization has been done and figuring out how to take a lot of that data, that

metadata, and basically creating a shared library that can just be reloaded and memory mapped
in when you're starting up rather than having to generate it each time.

[00:34:50] JM: Can you give an example of what kinds of metadata sharing between classes

can occur?

[00:34:58] GS: There's just all kinds of stuff that can be in there. Basically, if you sort of think
that a class in and of itself doesn't really know that much about what's going on, it’s in the

context where it's being called that you can do things like in lining and other things, creating the
– Basically, your Java code goes through a stage when you compile it where platform-

independent object code is created, right? The class fi le. But then even from the class fi le,
when you're in runtime, it's at that point that it knows, “I'm on this operating system. I’m on this

hardware. I'm on this particular generation of this hardware that it can create the native code
and produce the internal representation that’s used to quickly be able to map to native code.”

Those are the kinds of things that you don't want to have to generate each time.

[00:35:53] JM: And so the development of dynamic application class data sharing archives, of
all the things that you could've invested time into, why was that – And how did you know that

that was a valuable enough endeavor to engineer? Because this sounds like something that
was not easy to engineer, so I'm looking to get a window into the development process. How

you prioritize dynamic CDS archives.

[00:36:24] GS: So this is exactly one of these features that works and is actually more important
when you are running in the cloud, right? So where you’re running as an example, something

that you expect to come up quickly and be at a warmed up speed quickly, because it may not be
around that long. It’s sort of extra important. Then the sort of additional notion of creating

© 2019 Software Engineering Daily 15

SED 962 Transcript

something as a shared library that even could be used across instances in the cloud means that

you're able to reduce footprint so that you are sort of consuming as few resources as possible
and ultimately hopefully using that saved money.

[00:37:07] JM: Are you able to share data between containers?

[00:37:12] GS: Yeah, you can actually set it up so that that works.

[00:37:16] JM: That sounds hard. I mean, that sounds hard to engineer. Can you tell me a little

bit about the development process of getting that working?

[00:37:24] GS: Well, it’s kind of what you would expect, right? We sort of look at and analyze
what underlying capabilities are there, and then we make sure that we are using them. So in this

case, it's really sort of understanding the underlying capabilities. Making sure that Java is not
doing something weird or making different assumptions. Then the other sort of key piece is

trying to figure out how to take data make it as easy to use as possible and not sort of require
you to jump through a lot of hoops, and that's where we get to sort of the dynamically generated

part, right?

[00:37:57] JM: The ability to leverage commonalities between containers, this to me is an
interesting subject especially when you start talk about like serverless functionality, because

with serverless, I don't know if you've looked in this very much, but like there's this cold start
problem where if I want to have – If I want to deploy an AWS Lambda or Google cloud function

or whatever your serverless plan. But they all have this issue where if I want to execute my
application on-demand, I need to load all the context, including any programming languages

that this thing is going to need to execute.

Then if you have infrastructure that is basically warmed up in the sense that you have like a
JVM running or a JavaScript V8 running and it's already loaded on the node, then you save a lot

of the startup time. So all you have to do is throw your custom application on to the node that's
already been pre-warmed with the right virtual machine or infrastructure or whatever and it’s

going to execute a lot faster. So that can improve the functionality of the functions as a service
things.

© 2019 Software Engineering Daily 16

SED 962 Transcript

On the other hand, then you start to lose some of the isolation benefits, right? So any reflections
on that tradeoff?

[00:39:16] GS: So I think it's hard to know when you're making a programming language exactly

which style people are going to want to use. So what we try to do is sort of reduce the friction for
being able to make that choice, because which one is the right one to choose? Maybe different

depending on what you’re doing.

Ideally, you're not having to make that choice purely because of limitations in the tool chain that
you're using, right? As you say, doing something like having a hot start based on recycling a

JVM that's been there and maybe even having applications that have been loaded. So you're
basically making additional request to something that's already up and running is one kind of

architectural style. That would be one that would favor certain aspects, but may be can be
challenges on others, like isolation.

So the change that – The new capability that we’re bringing here makes it so that you aren’t sort

of restricted to choosing one style of architecture purely because the tools you're using aren’t
good at the other one. So in this case what we’re trying to do is make it so that if you want to do

something completely isolated in its own container with its own JVM and be an instance that’s
just kind of coming up quickly and doing something going way, that style of architecture is one

where you can absolutely choose Java.

[00:40:34] JM: Let’s talk about another element of Java 13, which is garbage collection.
Garbage collection is of course an element of every Java iteration, but as I was preparing for

this show, I was getting a little bit caught up on the Java ecosystem and I learned that there is a
newer Java garbage collector called ZGC. Can you shed some light on ZGC?

[00:40:59] GS: Yeah, absolutely. So ZGC is basically a garbage collector that is made for being

able to make very, very low latency pause time targets and guarantees. Traditionally, one of the
challenges that people have when they choose a language like Java that does automated

memory management is that you're resending some amount of control of when and how things

© 2019 Software Engineering Daily 17

SED 962 Transcript

are allocated, but more importantly when all of the potential garbage that you’ve created is freed

up.

So there sort of different kinds of concerns that you can have depending on the particular
workload and the situation you’re in. Sometimes what people care a lot about is throughput.

Sometimes what they care a lot about is latency, right? You want to know that requests that are
coming in are going to be serviced within a certain amount of time, a certain threshold. More

importantly, you’re almost never going to have a transaction that is just sitting there hanging for
long period of time from the perspective of whatever client has made that request.

So the idea with ZGC is that you can set a plus time target and the system will respect that. So

basically it will sort of try to do its best at keeping with that very low latency target, and if it finds
that for some reason it’s starting to take longer than that, it will kind of back off and give you the

opportunity to continue running.

The key here is that – And by the way, this is something that a number of folks have done in the
past even in some of our own products, like JRocket. JVM did that a decade ago. The difference

is that in this day and age, the heap sizes are growing tremendously. So what ZGC has as its
design center is providing those kind of guarantees while scaling to terabyte heaps.

[00:42:52] JM: The heap, if I remember correctly, heap is memory that is allocated for objects

as supposed to memory that’s allocated for stack frames or something?

[00:43:03] GS: Yeah. Basically, any of the things that your application is creating is probably
doing much of allocations of memory in the heap. The Java memory system generally manages

that for you, right? So it basically worries about where are all of the objects? Where are all the
data? If garbage collection is done, it typically will not only collect objects that can no longer be

reached. It also may move them around.

From one indication of the garbage collection to the next, the objects that your application has
created may have ended up in completely different places, hopefully being compacted so that

underlying facilities for handling things like paging and so on works smoothly. As well as if you're
lucky, being able to take advantage of things like prefetching if you're working on a collection of

© 2019 Software Engineering Daily 18

SED 962 Transcript

data and making sure that the data that your CPU needs to operate on is actually at the CPU

that it needs to be at the time you’re trying to do an operation on it.

[00:44:02] JM: One more question about garbage collection. How do you roll out a new
garbage collector? Because that sounds like so hard. I mean, if you change the garbage

collector, you may like totally change application performance for like millions of users, right?

[00:44:19] GS: Absolutely. So it tends to be something that we’re very, very careful about. So,
interestingly, people who use Java come in all flavors, right? There are people who really, really

care about the performance of their garbage collector and will spend months tuning, and there
are those who are like, “Look, I just want it work. Let it do what it does behind the scenes.”

Again, it also can depend on the type of application that you are writing. If you're writing a

trading system that may be different from if you are writing an IDE. So those are also aspects
that tend to be important.

When creating a totally new garbage collector, it takes quite a while to get to the point where

you have something that's working at all. But then what you tend to want to do is try it on what
you hope are a bunch of representative applications and sort of make measurements about how

it's working, and then overtime increase the circle of applications that you're trying it with.
Typically, you want to try it with the kind of application that whom is going to display better

behavior with your garbage collection algorithm, but you may want to do the reverse as well,
right? Try to figure out the things that you think is not going to be as good at and try it on those

and maybe try to minimize how bad it is on the things that it's sort of okay, but it’d be bad on.

I think another in a big concern that tends to come in is how tunable do you make it versus how
good is it out of the box. So we tend to do all of those things, test all of those things. We will also

test how it works overtime. So doing something that will do runs that go on. Throwing all kinds of
stuff at it for weeks and months to try to make sure that the performance keeps up and doesn't

degrade overtime and you don't have lates and all that kind of great stuff.

Then, ultimately, the real test is we’ll download lots of applications from across the Internet.
We’ll run it on a bunch of internal applications that we have. Oracle has tons of things running in

© 2019 Software Engineering Daily 19

SED 962 Transcript

Java. So there are lots of great applications we can try. But then putting it as, first, generally as

a project outside of the main line of Java and delivering those directly that people can try and
give us feedback on.

Ultimately, getting it into the JDK, but as an experimental garbage collector, each of these steps

give us sort of incrementally more people trying it and using it and giving us feedback and
ultimately getting to the state where it becomes a supported garbage collector. Then overtime, it

may actually be on a path to becoming a new default collector, or it might not be, right? It might
be a collector that remains in there as a supported collector for years and years. But because

it's more special-purpose than general purpose, it’s sort of might remain in that state for quite a
while.

Then sort of to round out the lifecycle, we are actually at kind of a state where we may look at

some of these things and say, “Does this garbage collector still make sense? Is it something we
should continue to maintain or is it perhaps something whose original purpose and need to have

been obviated by later developments?”

We’re actually coming up on a stage where that may occur for at least one of the garbage
collectors that's been in Java for quite a while. So that'll be interesting to see because, of

course, the more things you’re carrying around in backpack, the slower you tend to go. We
actively look at places where new things and new developments can kind of replace older things

and continue to make progress for everyone using Java.

[00:47:45] JM: Georges, thank you for coming on the show. It’s been a pleasure talking to you.

[00:47:47] GS: Thank you, Jeff. I really appreciate it, and I look forward to talking with you
again.

[END OF INTERVIEW]

[00:48:01] JM: If you want to extract value from your data, it can be difficult especially for

nontechnical, non-analyst users. As software builders, you have this unique opportunity to
unlock the value of your data to users through your product or your service.

© 2019 Software Engineering Daily 20

SED 962 Transcript

Jaspersoft offers embeddable reports, dashboards and data visualizations that developers love.
Give your users intuitive access to data in the ideal place for them to take action within your

application. To check out a sample application with embedded analytics, go to
softwareengineeringdaily.com/jaspersoft. You can find out how easy it is to embed reporting and

analytics into your application. Jaspersoft is great for admin dashboards or for helping your
customers make data-driven decisions within your product, because it's not just your company

that wants analytics. It's also your customers.

In an upcoming episode of Software Engineering Daily, we will talk to TIBCO about visualizing
data inside apps based on modern frontend libraries like React, Angular, and VueJS. In the

meantime, check out Jaspersoft for yourself at softwareengineering.com/jaspersoft.

Thanks to TIBCO for being a sponsor of Software Engineering Daily.

[END]

© 2019 Software Engineering Daily 21

